Skip to main content
Log in

Review: Textile-based soft robotics for physically challenged individuals

  • Invited Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to the rapid advancements in the human–robot interface, soft robotics is getting attention in recent times. Conventional robots or robotic devices are not compatible with being used for internal application of the patient’s body even outer applications are also inhibited due to lack of flexibility, heavyweight, and less motion creation. As physically challenged persons require different degree of comfortability and flexibility in their everyday work or therapy, textile-based soft robots have diverse advantages including safety, easiness to use, and proper deformability to assist them. Any robotic system for rehabilitation of the impaired patients is composed of three different units of sensing, actuation, and controlling. The accommodation of these three units in conventional robotic systems makes the device heavy, rigid, and mechanically less functional. Textile materials have a higher level of inherent and programmable properties regarding physical and chemical structure, weight, durability, and deformability. Leveraging textile structures, many efforts have already been done for the fabrication of soft robots. This review will discuss the present scenario of textile-based soft actuators that are made to assist physically challenged individuals. Materials, fabrication methods, outcomes of the devices, requirement specific applications of soft robotics for physically challenged individuals have been discussed. Finally, we suggest some future directions for textile-based soft robots addressing some challenges in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data and code availability

All data generated or analyzed during this study are included in this study.

References

  1. Vornholt K et al (2018) Disability and employment—overview and highlights. Eur J Work Organ Psychol 27(1):40–55. https://doi.org/10.1080/1359432X.2017.1387536

    Article  Google Scholar 

  2. Qassim HM, Wan Hasan WZ (2020) A review on upper limb rehabilitation robots. Appl Sci 10(19):1–18. https://doi.org/10.3390/app10196976

    Article  CAS  Google Scholar 

  3. Ekkelenkamp R, Veneman J, Van Der Kooij H (2005) LOPES: selective control of gait functions during the gait rehabilitation of CVA patients. In: Proceedings of the 2005 IEEE 9th international conference on rehabilitation robotics, vol 2005, pp 361–364. https://doi.org/10.1109/ICORR.2005.1501120

  4. Macmathúna L (2012) Getting to grips with innovation and genre diversification in the work of the Ó Neachtain circle in early eighteenth-century Dublin. Eighteenth Century Irel 27(3):53–83. https://doi.org/10.3828/eci.2012.6

    Article  Google Scholar 

  5. Reinkensmeyer D, Dietz V (2016) Neurorehabilitation technology: second edition. Neurorehabilitation technology, 2nd ed, pp 1–647. https://doi.org/10.1007/978-3-319-28603-7

  6. Hesse S, Waldner A, Tomelleri C (2010) Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 7(1):1–10. https://doi.org/10.1186/1743-0003-7-30

    Article  Google Scholar 

  7. Roy A et al (2007) Measurement of human ankle stiffness using the anklebot. In: 2007 IEEE international conference on rehabilitation robotics, ICORR’07, vol 00, no c, pp 356–363. https://doi.org/10.1109/ICORR.2007.4428450

  8. Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron 15(2):216–225. https://doi.org/10.1109/TMECH.2010.2041245

    Article  Google Scholar 

  9. Winfree KN, Stegall P, Agrawal SK (2011) Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II. In: IEEE international conference on rehabilitation robotics, December 2014. https://doi.org/10.1109/ICORR.2011.5975499

  10. Kawamoto H, Lee S, Kanbe S, Sankai Y (2003) Power assist method for HAL-3 using EMG-based feedback controller. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, vol 2, pp 1648–1653https://doi.org/10.1109/icsmc.2003.1244649

  11. Hu XL, Tong KY, Song R, Zheng XJ, Leung WWF (2009) A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair 23(8):837–846. https://doi.org/10.1177/1545968309338191

    Article  CAS  Google Scholar 

  12. Głowiński S, Blażejewski A (2019) An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm. Acta Bioeng Biomech 21(1):45–53. https://doi.org/10.5277/ABB-01268-2018-02

    Article  Google Scholar 

  13. Miao Q, Zhang M, McDaid A, Peng Y, Xie SQ (2020) A robot-assisted bilateral upper limb training strategy with subject-specific workspace: a pilot study. Rob Auton Syst. https://doi.org/10.1016/j.robot.2019.103334

    Article  Google Scholar 

  14. Sheng B, Zhang Y, Meng W, Deng C, Xie S (2016) Bilateral robots for upper-limb stroke rehabilitation: state of the art and future prospects. Med Eng Phys 38(7):587–606. https://doi.org/10.1016/j.medengphy.2016.04.004

    Article  Google Scholar 

  15. Bogue R (2018) Rehabilitation robots. Ind Rob 45(3):301–306. https://doi.org/10.1108/IR-03-2018-0046

    Article  Google Scholar 

  16. Zhang H, Austin H, Buchanan S, Herman R, Koeneman J, He J (2011) Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT. In: IEEE international conference on rehabilitation robotics.https://doi.org/10.1109/ICORR.2011.5975440

  17. Song R, Tong KY, Hu X, Li L (2008) Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. IEEE Trans Neural Syst Rehabil Eng 16(4):371–379. https://doi.org/10.1109/TNSRE.2008.926707

    Article  Google Scholar 

  18. Cesqui B, Tropea P, Micera S, Krebs HI (2013) EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study. J Neuroeng Rehabil 10(1):1–15. https://doi.org/10.1186/1743-0003-10-75

    Article  Google Scholar 

  19. Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1(1):5–11. https://doi.org/10.1089/soro.2013.0001

    Article  Google Scholar 

  20. Gries T, Raina M, Quadflieg T, Stolyarov O (2016) Manufacturing of textiles for civil engineering applications. Elsevier, New York. https://doi.org/10.1016/B978-1-78242-446-8.00002-1

    Book  Google Scholar 

  21. Fu C, Xia Z, Hurren C, Nilghaz A, Wang X (2022) Biosensors and bioelectronics textiles in soft robots: current progress and future trends. Biosens Bioelectron 196:113690. https://doi.org/10.1016/j.bios.2021.113690

    Article  CAS  Google Scholar 

  22. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336. https://doi.org/10.1002/adma.201400633

    Article  CAS  Google Scholar 

  23. Weng W, Chen P, He S, Sun X, Peng H (2016) Smarte elektronische Textilien. Angew Chemie 128(21):6248–6277. https://doi.org/10.1002/ange.201507333

    Article  Google Scholar 

  24. Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2(28):10776–10787. https://doi.org/10.1039/c4ta00203b

    Article  CAS  Google Scholar 

  25. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475. https://doi.org/10.1038/nature14543

    Article  CAS  Google Scholar 

  26. Rich SI, Wood RJ, Majidi C (2018) Untethered soft robotics. Nat Electron 1(2):102–112. https://doi.org/10.1038/s41928-018-0024-1

    Article  Google Scholar 

  27. Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3(6):84–100. https://doi.org/10.1038/s41578-018-0002-2

    Article  Google Scholar 

  28. Erol O, Pantula A, Liu W, Gracias DH (2019) Transformer hydrogels: a review. Adv Mater Technol. https://doi.org/10.1002/admt.201900043

    Article  Google Scholar 

  29. Thalman CM, Lam QP, Nguyen PH, Sridar S, Polygerinos P (2018) A novel soft elbow exosuit to supplement bicep lifting capacity. In: IEEE international conference on intelligent robots and systems, pp 6965–6971. https://doi.org/10.1109/IROS.2018.8594403.

  30. T. H. Koh, N. Cheng, H. K. Yap, and C. H. Yeow, “Design of a soft robotic elbow sleeve with passive and intent-controlled actuation,” Front. Neurosci., vol. 11, no. OCT, pp. 1–12, 2017, doi: https://doi.org/10.3389/fnins.2017.00597.

  31. Simpson CS, Okamura AM, Hawkes EW (2017) Exomuscle: an inflatable device for shoulder abduction support. In: Proceedings—IEEE international conference on robotics and automation, pp 6651–6657. https://doi.org/10.1109/ICRA.2017.7989785

  32. O’Neill CT, Phipps NS, Cappello L, Paganoni S, Walsh CJ (2017) A soft wearable robot for the shoulder: design, characterization, and preliminary testing. In: IEEE international conference on rehabilitation robotics, vol 02129, pp 1672–1678.https://doi.org/10.1109/ICORR.2017.8009488

  33. Natividad RF, Hong SW, Miller-Jackson TM, Yeow CH (2019) The exosleeve: a soft robotic exoskeleton for assisting in activities of daily living. Biosyst Biorobot 22:406–409. https://doi.org/10.1007/978-3-030-01887-0_78

    Article  Google Scholar 

  34. Yap HK et al (2017) A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients. IEEE Robot Autom Lett 2(3):1383–1390. https://doi.org/10.1109/LRA.2017.2669366

    Article  Google Scholar 

  35. In H, Kang BB, Sin MK, Cho KJ (2015) Exo-glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot Autom Mag 22(1):97–105. https://doi.org/10.1109/MRA.2014.2362863

    Article  Google Scholar 

  36. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Rob Auton Syst 73:135–143. https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  37. Connolly F, Wagner DA, Walsh CJ, Bertoldi K (2019) Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots. Extrem Mech Lett 27:52–58. https://doi.org/10.1016/j.eml.2019.01.007

    Article  Google Scholar 

  38. Cappello L et al (2018) Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators. Soft Robot 5(5):662–674. https://doi.org/10.1089/soro.2017.0076

    Article  Google Scholar 

  39. Nassour J, Hamker F (2019) Enfolded textile actuator for soft wearable robots. In: 2019 IEEE international conference on cyborg and bionic systems, CBS 2019, pp 60–65. https://doi.org/10.1109/CBS46900.2019.9114425

  40. Bartlett NW et al (2015) A soft robotic orthosis for wrist rehabilitation. J Med Devices Trans ASME 9(3):2015–2017. https://doi.org/10.1115/1.4030554

    Article  Google Scholar 

  41. Garriga-Casanovas A, Faudzi AAM, Hiramitsu T, Rodriguez F, Baena Y, Suzumori K (2017) Multifilament pneumatic artificial muscles to mimic the human neck. In: 2017 IEEE international conference on robotics and biomimetics, ROBIO 2017, vol 2018, pp 809–816. https://doi.org/10.1109/ROBIO.2017.8324517

  42. J. Realmuto and T. Sanger (2019) A robotic forearm orthosis using soft fabric-based helical actuators. In: RoboSoft 2019-2019 IEEE international conference on soft robotics, pp 591–596. https://doi.org/10.1109/ROBOSOFT.2019.8722759

  43. Park SH, Yi J, Kim D, Lee Y, Koo HS, Park YL (2019) A lightweight, soft wearable sleeve for rehabilitation of forearm pronation and supination. In: RoboSoft 2019-2019 IEEE international conference on soft robotics, pp 636–641. https://doi.org/10.1109/ROBOSOFT.2019.8722783

  44. Agarwal G, Robertson MA, Sonar H, Paik J (2017) Design and computational modeling of a modular, compliant robotic assembly for human lumbar unit and spinal cord assistance. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-14220-3

    Article  CAS  Google Scholar 

  45. Govin D, Saenz L, Athanasaki G, Snyder L, Polygerinos P (2018) Design and development of a soft robotic back orthosis. In: Frontiers in biomedical devices, BIOMED—2018 design of medical devices conference, DMD 2018, pp 1–3. https://doi.org/10.1115/DMD2018-6806

  46. Sridar S, Nguyen PH, Zhu M, Lam QP, Polygerinos P (2017) Development of a soft-inflatable exosuit for knee rehabilitation. IEEE Int Conf Intell Robot Syst 2017:3722–3727. https://doi.org/10.1109/IROS.2017.8206220

    Article  Google Scholar 

  47. Fang J et al (2020) Novel accordion-inspired foldable pneumatic actuators for knee assistive devices. Soft Robot 7(1):95–108. https://doi.org/10.1089/soro.2018.0155

    Article  Google Scholar 

  48. Asbeck AT, Schmidt K, Walsh CJ (2015) Soft exosuit for hip assistance. Rob Auton Syst 73:102–110. https://doi.org/10.1016/j.robot.2014.09.025

    Article  Google Scholar 

  49. Thalman CM, Hsu J, Snyder L, Polygerinos P (2019) Design of a soft ankle-foot orthosis exosuit for foot drop assistance. In: Proceedings—IEEE international conference on robotics and automation, vol 2019, pp 8436–8442. https://doi.org/10.1109/ICRA.2019.8794005

  50. Park YL et al (2014) Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspiration Biomim. https://doi.org/10.1088/1748-3182/9/1/016007

    Article  Google Scholar 

  51. Chung J, Heimgartner R, Oneill CT, Phipps NS, Walsh CJ (2018) ExoBoot, a soft inflatable robotic boot to assist ankle during walking: design, characterization and preliminary tests. In: Proceedings of the IEEE RAS EMBS international conference on biomedical robotics and biomechatronics, vol 2018, pp 509–516. https://doi.org/10.1109/BIOROB.2018.8487903

  52. Sovero S, Talele N, Smith C, Cox N, Swift T, Byl K (2017) Initial data and theory for a high specific-power ankle exoskeleton device. Springer Proc Adv Robot 1:355–364. https://doi.org/10.1007/978-3-319-50115-4_31

    Article  Google Scholar 

  53. Verl A, Albu-Schäffer A, Brock O, Raatz A (2015) Soft robotics: transferring theory to application. Soft Robot Transf Theory Appl. https://doi.org/10.1007/978-3-662-44506-8

    Article  Google Scholar 

  54. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318(5853):1088–1093. https://doi.org/10.1126/science.1145803

    Article  CAS  Google Scholar 

  55. Wei S, Ghosh TK (2022) Bioinspired structures for soft actuators, vol 2101521. https://doi.org/10.1002/admt.202101521

  56. Whitesides GM (2018) Soft robotics. Angew Chemie Int Ed 57(16):4258–4273. https://doi.org/10.1002/anie.201800907

    Article  CAS  Google Scholar 

  57. Polygerinos P et al (2017) Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Adv Eng Mater 19(12):1–22. https://doi.org/10.1002/adem.201700016

    Article  CAS  Google Scholar 

  58. Boyraz P, Runge G, Raatz A (2018) An overview of novel actuators for soft robotics. High-Throughput 7(3):1–21. https://doi.org/10.3390/act7030048

    Article  Google Scholar 

  59. Polygerinos P et al (2017) Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Adv Eng Mater. https://doi.org/10.1002/adem.201700016

    Article  Google Scholar 

  60. Gorissen B, Reynaerts D, Konishi S, Yoshida K, Kim JW, De Volder M (2017) Elastic inflatable actuators for soft robotic applications. Adv Mater. https://doi.org/10.1002/adma.201604977

    Article  Google Scholar 

  61. Li S, Vogt DM, Rus D, Wood RJ (2017) Fluid-driven origami-inspired artificial muscles. Proc Natl Acad Sci USA 114(50):13132–13137. https://doi.org/10.1073/pnas.1713450114

    Article  CAS  Google Scholar 

  62. Paez L, Agarwal G, Paik J (2016) Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robot 3(3):109–119. https://doi.org/10.1089/soro.2016.0023

    Article  Google Scholar 

  63. Phan PT, Thai MT, Hoang TT, Davies J, Nguyen CC (2022) Smart textiles using fluid-driven artificial muscle fibers. Sci Rep. https://doi.org/10.1038/s41598-022-15369-2

    Article  Google Scholar 

  64. Hoang TT, Phan PT, Thai MT, Lovell NH, Do TN (2020) Bio-inspired conformable and helical soft fabric gripper with variable stiffness and touch sensing. Adv Mater Technol 5(12):1–14. https://doi.org/10.1002/admt.202000724

    Article  Google Scholar 

  65. Hoang TT et al (2021) A wearable soft fabric sleeve for upper limb augmentation. Sensors 21(22):1–24. https://doi.org/10.3390/s21227638

    Article  Google Scholar 

  66. Yang B et al (2021) Reprogrammable soft actuation and shape-shifting via tensile jamming. Sci Adv 7(40):1–11. https://doi.org/10.1126/sciadv.abh2073

    Article  Google Scholar 

  67. Shah DS, Powers JP, Tilton LG, Kriegman S, Bongard J, Kramer-Bottiglio R (2021) A soft robot that adapts to environments through shape change. Nat Mach Intell 3(1):51–59. https://doi.org/10.1038/s42256-020-00263-1

    Article  Google Scholar 

  68. Stylios GK, Wan T (2007) Shape memory training for smart fabrics. Trans Inst Meas Control 29(3–4):321–336. https://doi.org/10.1177/0142331207069479

    Article  Google Scholar 

  69. Hu J et al (2010) WITHDRAWN: an overview of stimuli-responsive polymers for smart textile applications. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2010.02.044

    Article  Google Scholar 

  70. Sanchez V, Walsh CJ, Wood RJ (2021) Textile technology for soft robotic and autonomous garments. Adv Funct Mater 31(6):1–55. https://doi.org/10.1002/adfm.202008278

    Article  CAS  Google Scholar 

  71. Chen J et al (2018) Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem 10(2):132–138. https://doi.org/10.1038/nchem.2887

    Article  CAS  Google Scholar 

  72. Yuan J et al (2019) Shape memory nanocomposite fibers for untethered high-energy microengines. Science 365(6449):155–158. https://doi.org/10.1126/science.aaw3722

    Article  CAS  Google Scholar 

  73. Pan CL, Feng ZH, Ma YT, Liu YB (2008) Small torsional piezoelectric fiber actuators with helical electrodes. Appl Phys Lett 92(1):1–4. https://doi.org/10.1063/1.2830009

    Article  CAS  Google Scholar 

  74. Pan CL, Ma YT, Liu YB, Zhang Q, Feng ZH (2008) Torsional displacement of piezoelectric fiber actuators with helical electrodes. Sens Actuators A Phys 148(1):250–258. https://doi.org/10.1016/j.sna.2008.08.002

    Article  CAS  Google Scholar 

  75. Khudiyev T et al (2017) Electrostrictive microelectromechanical fibres and textiles. Nat Commun 8(1):1–7. https://doi.org/10.1038/s41467-017-01558-5

    Article  CAS  Google Scholar 

  76. Egusa S et al (2010) Multimaterial piezoelectric fibres. Nat Mater 9(8):643–648. https://doi.org/10.1038/nmat2792

    Article  CAS  Google Scholar 

  77. Baumgartner R et al (2020) A lesson from plants: high-speed soft robotic actuators. Adv Sci. https://doi.org/10.1002/advs.201903391

    Article  Google Scholar 

  78. Li Y, Guo M, Li Y (2019) Recent advances in plasticized PVC gels for soft actuators and devices: a review. J Mater Chem C 7(42):12991–13009. https://doi.org/10.1039/c9tc04366g

    Article  CAS  Google Scholar 

  79. Furuse A, Hashimoto M (2017) Development of novel textile and yarn actuators using plasticized PVC gel. Electroact Polym Actuators Devices 10163:1016327. https://doi.org/10.1117/12.2258595

    Article  Google Scholar 

  80. Kaasik F et al (2017) Scalable fabrication of ionic and capacitive laminate actuators for soft robotics. Sens Actuators B Chem 246:154–163. https://doi.org/10.1016/j.snb.2017.02.065

    Article  CAS  Google Scholar 

  81. Baughman RH et al (1999) Carbon nanotube actuators. Science 284(5418):1340–1344. https://doi.org/10.1126/science.284.5418.1340

    Article  CAS  Google Scholar 

  82. Foroughi J et al (2011) Torsional carbon nanotube artificial muscles. Science 334(6055):494–497. https://doi.org/10.1126/science.1211220

    Article  CAS  Google Scholar 

  83. Ruangsupapichat N, Pollard MM, Harutyunyan SR, Feringa BL (2011) Reversing the direction in a light-driven rotary molecular motor. Nat Chem 3(1):53–60. https://doi.org/10.1038/nchem.872

    Article  CAS  Google Scholar 

  84. Gelebart AH, Mc Bride M, Schenning APHJ, Bowman CN, Broer DJ (2016) Photoresponsive fiber array: toward mimicking the collective motion of cilia for transport applications. Adv Funct Mater 26(29):5322–5327. https://doi.org/10.1002/adfm.201601221

    Article  CAS  Google Scholar 

  85. Yoshino T, Kondo M, Mamiya JI, Kinoshita M, Yu Y, Ikeda T (2010) Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater 22(12):1361–1363. https://doi.org/10.1002/adma.200902879

    Article  CAS  Google Scholar 

  86. Lancia F, Ryabchun A, Katsonis N (2019) Life-like motion driven by artificial molecular machines. Nat Rev Chem 3(9):536–551. https://doi.org/10.1038/s41570-019-0122-2

    Article  CAS  Google Scholar 

  87. Liao J, Yang M, Liu Z, Zhang H (2019) Fast photoinduced deformation of hydrogen-bonded supramolecular polymers containing α-cyanostilbene derivative. J Mater Chem A 7(5):2002–2008. https://doi.org/10.1039/c8ta12030g

    Article  CAS  Google Scholar 

  88. Kim H et al (2018) Thermally responsive torsional and tensile fiber actuator based on graphene oxide. ACS Appl Mater Interfaces 10(38):32760–32764. https://doi.org/10.1021/acsami.8b12426

    Article  CAS  Google Scholar 

  89. Cherubini A, Moretti G, Vertechy R, Fontana M (2015) Experimental characterization of thermally-activated artificial muscles based on coiled nylon fishing lines. AIP Adv. https://doi.org/10.1063/1.4923315

    Article  Google Scholar 

  90. Ionov L, Stoychev G, Jehnichen D, Sommer JU (2017) Reversibly actuating solid Janus polymeric fibers. ACS Appl Mater Interfaces 9(5):4873–4881. https://doi.org/10.1021/acsami.6b13084

    Article  CAS  Google Scholar 

  91. Farhan M, Rudolph T, Kratz K, Lendlein A (2018) Torsional fiber actuators from shape-memory polymer. MRS Adv 3(63):3861–3868. https://doi.org/10.1557/adv.2018.621

    Article  CAS  Google Scholar 

  92. Shi Q et al (2017) A remote controllable fiber-type near-infrared light-responsive actuator. Chem Commun 53(81):11118–11121. https://doi.org/10.1039/c7cc03408c

    Article  CAS  Google Scholar 

  93. Kim H et al (2019) Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv Funct Mater. https://doi.org/10.1002/adfm.201905063

    Article  Google Scholar 

  94. Park J et al (2017) Electrically controllable twisted-coiled artificial muscle actuators using surfacemodified polyester fibers. Smart Mater Struct 26(3). https://doi.org/10.1088/1361-665X/aa5323

  95. Jia T et al (2019) Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater 29(18):1–37. https://doi.org/10.1002/adfm.201808241

    Article  CAS  Google Scholar 

  96. Cheng H et al (2013) Graphene fibers with predetermined deformation as Moisture-triggered actuators and robots. Angew Chemie Int Ed 52(40):10482–10486. https://doi.org/10.1002/anie.201304358

    Article  CAS  Google Scholar 

  97. Mu J et al (2019) Sheath-run artificial muscles. Sci 365:150-155. https://doi.org/10.1126/science.aaw2403

    Article  CAS  Google Scholar 

  98. Chen P et al (2015) Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotechnol 10(12):1077–1083. https://doi.org/10.1038/nnano.2015.198

    Article  CAS  Google Scholar 

  99. Wang W et al (2018) Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications. J Mater Chem A 6(45):22599–22608. https://doi.org/10.1039/c8ta08064j

    Article  CAS  Google Scholar 

  100. Yu Y, Wang J, Han X, Yang S, An G, Lu C (2023) Fiber-shaped soft actuators: fabrication, actuation mechanism and application. Adv Fiber Mater. https://doi.org/10.1007/s42765-022-00254-4

    Article  Google Scholar 

  101. Wang Z et al (2016) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8(37):24837–24843. https://doi.org/10.1021/acsami.6b08207

    Article  CAS  Google Scholar 

  102. Guo L, Berglin L, Mattila H (2012) Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns. Text Res J 82(19):1937–1947. https://doi.org/10.1177/0040517512452931

    Article  CAS  Google Scholar 

  103. Cheng Y, Wang R, Sun J, Gao L (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27(45):7365–7371. https://doi.org/10.1002/adma.201503558

    Article  CAS  Google Scholar 

  104. Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder GJ (2020) Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun. https://doi.org/10.1038/s41467-020-14399-6

    Article  Google Scholar 

  105. Dutta S, Mehraeen S, Persson N, Martinez JG, Jager EWH (2022) The effect of electroactive length and intrinsic conductivity on the actuation behaviour of conducting polymer-based yarn actuators for textile muscles. Sens Actuators B Chem 370:132384. https://doi.org/10.1016/j.snb.2022.132384

    Article  CAS  Google Scholar 

  106. Peng Y, Zhou X, Wu J, Sheng N, Yang M (2022) Free-standing single-helical woolen yarn artificial muscles with robust and trainable humidity-sensing actuation by eco-friendly treatment strategies. Smart Mater Struct 31:095017. https://doi.org/10.1088/1361-665X/ac7fca

    Article  Google Scholar 

  107. Guo W et al (2012) A novel electromechanical actuation mechanism of a carbon nanotube fiber. Adv Mater 24(39):5379–5384. https://doi.org/10.1002/adma.201201845

    Article  CAS  Google Scholar 

  108. Lee JA et al (2014) All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano Lett 14(5):2664–2669. https://doi.org/10.1021/nl500526r

    Article  CAS  Google Scholar 

  109. Maziz A, Concas A, Khaldi A, Stålhand J, Persson N-K, Jager EWH (2017) Knitting and weaving artificial muscles. Sci Adv 3:1–12

    Article  Google Scholar 

  110. Must I, Sinibaldi E, Mazzolai B (2019) A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat Commun 10(1):1–8. https://doi.org/10.1038/s41467-018-08173-y

    Article  CAS  Google Scholar 

  111. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676. https://doi.org/10.1126/science.1066102

    Article  Google Scholar 

  112. Haines CS et al (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872. https://doi.org/10.1126/science.1246906

    Article  CAS  Google Scholar 

  113. Lima MD et al (2012) Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338(6109):928–932. https://doi.org/10.1126/science.1226762

    Article  CAS  Google Scholar 

  114. Chun KY et al (2013) Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nat Commun. https://doi.org/10.1038/ncomms4322

    Article  Google Scholar 

  115. Zeng H et al (2019) Light-fuelled freestyle self-oscillators. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-13077-6

    Article  CAS  Google Scholar 

  116. Kongahage D, Spinks GM, Foroughi J (2021) Twisted and coiled multi-ply yarns artificial muscles. Sens Actuator A-Phys, 318:112490. https://doi.org/10.1016/j.sna.2020.112490

  117. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709):274–279. https://doi.org/10.1038/s41586-018-0185-0

    Article  CAS  Google Scholar 

  118. Lee DW, Kim SH, Kozlov ME, Lepró X, Baughman RH, Kim SJ (2018) Magnetic torsional actuation of carbon nanotube yarn artificial muscle. RSC Adv 8(31):17421–17425. https://doi.org/10.1039/c8ra01040d

    Article  CAS  Google Scholar 

  119. Gandhi KL, Sondhelm WS (2016) Technical fabric structures. 1. Woven fabrics, vol 1, 2nd edn. Elsevier, New York. https://doi.org/10.1016/B978-1-78242-458-1.00004-2

    Book  Google Scholar 

  120. Fleury A, Wu G, Chau T (2019) A wearable fabric-based speech-generating device: system design and case demonstration. Disabil Rehabil Assist Technol 14(5):434–444. https://doi.org/10.1080/17483107.2018.1462860

    Article  Google Scholar 

  121. Yuen AC, Bakir AA, Rajdi NNZM, Lam CL, Saleh SM, Wicaksono DHB (2014) Proprioceptive sensing system for therapy assessment using cotton fabric-based biomedical microelectromechanical system. IEEE Sens J 14(8):2872–2880. https://doi.org/10.1109/JSEN.2014.2319779

    Article  Google Scholar 

  122. Zysset C, Kinkeldei TW, Munzenrieder N, Cherenack K, Tröster G (2012) Integration method for electronics in woven textiles. IEEE Trans Components Packag Manuf Technol 2(7):1107–1117. https://doi.org/10.1109/TCPMT.2012.2189770

    Article  Google Scholar 

  123. Cho F, Sugimoto R, Noritsugu T, Li X (2017) Improvement of wearable power assist wear for low back support using pneumatic actuator. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/249/1/012004

    Article  Google Scholar 

  124. Simpson CS, Okamura AM, Hawkes EW (2017) Simpson, Okamura, Hawkes—2017—Exomuscle An inflatable device.pdf, pp 6651–6657

  125. Natividad RF, Hong SW, Miller-Jackson TM, Yeow CH (2019) The exosleeve: a soft robotic exoskeleton for assisting in activities of daily living, vol 22. Springer, Berlin. https://doi.org/10.1007/978-3-030-01887-0_78

    Book  Google Scholar 

  126. Govin D, Saenz L, Athanasaki G, Snyder L, Polygerinos P (2018) Design and development of a soft robotic back orthosis. In: Frontiers in biomedical devices, BIOMED—2018 design of medical devices conference, DMD 2018, pp 9–11. https://doi.org/10.1115/DMD2018-6806

  127. IEEE Robotics and Automation Society, IEEE Engineering in Medicine and Biology Society, Universiteit Twente, and Institute of Electrical and Electronics Engineers (2016) ExoBoot, a soft inflatable robotic boot to assist ankle during walking: design, characterization and preliminary tests. In: 2018 7th IEEE international conference on biomedical robotics and biomechatronics Enschede, Netherlands, pp 509–516

  128. Zhu M, Adams W, Polygerinos P (2017) Carpal tunnel syndrome soft relief device for typing applications. In: Frontiers in biomedical devices, BIOMED—2017 design of medical devices conference, DMD 2017, no C, 10–11. https://doi.org/10.1115/DMD2017-3374

  129. Nishioka Y et al (2017) Development of a pneumatic soft actuator with pleated inflatable structures. Adv Robot 31(14):753–762. https://doi.org/10.1080/01691864.2017.1345323

    Article  Google Scholar 

  130. Niiyama R, Rus D, Kim S (2014) Pouch motors: printable/inflatable soft actuators for robotics. In: Proceedings—IEEE international conference on robotics and automation, pp 6332–6337. https://doi.org/10.1109/ICRA.2014.6907793

  131. Nguyen PH, Imran Mohd IB, Sparks C, Arellano FL, Zhang W, Polygerinos P (2019) Fabric soft poly-limbs for physical assistance of daily living tasks. In: Proceedings—IEEE international conference on robotics and automation, vol 2019, pp 8429–8435. https://doi.org/10.1109/ICRA.2019.8794294

  132. Anand SC (2016) Technical fabric structures—2. Knitted fabrics, vol 1, 2nd edn. Elsevier, New York. https://doi.org/10.1016/B978-1-78242-458-1.00005-4

    Book  Google Scholar 

  133. Albaugh L, Hudson S, Yao L (2019) Digital fabrication of soft actuated objects by machine knitting, pp 1–13. https://doi.org/10.1145/3290605.3300414

  134. Bueno MA, Camillieri B (2019) Structure and mechanics of knitted fabrics, 2nd edn. Elsevier, New York. https://doi.org/10.1016/B978-0-08-102619-9.00003-1

    Book  Google Scholar 

  135. Luo Y, Foshey M (2022) Digital fabrication of pneumatic actuators with integrated sensing by machine knitting. https://doi.org/10.1145/3491102.3517577

  136. Chen Y, Tan X, Yan D, Zhang Z, Gong Y (2020) A composite fabric-based soft rehabilitation glove with soft joint for dementia in Parkinson’s disease. IEEE J Transl Eng Health Med 8:1–10. https://doi.org/10.1109/JTEHM.2020.2981926

    Article  Google Scholar 

  137. Ge L et al (2020) Design, modeling, and evaluation of fabric-based pneumatic actuators for soft wearable assistive gloves. Soft Robot 7(5):583–596. https://doi.org/10.1089/soro.2019.0105

    Article  Google Scholar 

  138. Cherif C, Krzywinski S, Lin H, Schulz C, Haasemann G (2013) New process chain for realisation of complex 2D/3D weft knitted fabrics for thermoplastic composite applications. Procedia Mater Sci 2:111–129. https://doi.org/10.1016/j.mspro.2013.02.014

    Article  CAS  Google Scholar 

  139. Hiraoka M et al (2016) Power-efficient low-temperature woven coiled fibre actuator for wearable applications. Sci Rep 6:1–9. https://doi.org/10.1038/srep36358

    Article  CAS  Google Scholar 

  140. Fan W et al (2020) Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 6(11):1–11. https://doi.org/10.1126/sciadv.aay2840

    Article  CAS  Google Scholar 

  141. Shin J, Han Y, Lee J, Han M (2023) Shape memory alloys in textile platform: smart textile-composite actuator and its application to soft grippers. Sens 23(3):1518. https://doi.org/10.3390/s23031518

  142. Yang K, Gu CL (2002) A novel robot hand with embedded shape memory alloy actuators. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1243/09544060260128788

    Article  Google Scholar 

  143. Han MW et al (2016) Woven type smart soft composite for soft morphing car spoiler. Compos Part B Eng 86:285–298. https://doi.org/10.1016/j.compositesb.2015.10.009

    Article  CAS  Google Scholar 

  144. Seok S, Onal CD, Cho KJ, Wood RJ, Rus D, Kim S (2013) Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans Mechatron 18(5):1485–1497. https://doi.org/10.1109/TMECH.2012.2204070

    Article  Google Scholar 

  145. Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robot arm inspired by the octopus. Adv Robot 26(7):709–727. https://doi.org/10.1163/156855312X626343

    Article  Google Scholar 

  146. Kim HJ, Song SH, Ahn SH (2013) A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater Struct. https://doi.org/10.1088/0964-1726/22/1/014007

    Article  Google Scholar 

  147. Wang W, Rodrigue H, Ahn SH (2015) Smart soft composite actuator with shape retention capability using embedded fusible alloy structures. Compos Part B Eng 78:507–514. https://doi.org/10.1016/j.compositesb.2015.04.007

    Article  CAS  Google Scholar 

  148. Icardi U (2001) Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments. Compos Part B Eng 32(3):259–267. https://doi.org/10.1016/S1359-8368(00)00062-7

    Article  Google Scholar 

  149. Wu R, Han MW, Lee GY, Ahn SH (2013) Woven type smart soft composite beam with in-plane shape retention. Smart Mater Struct. https://doi.org/10.1088/0964-1726/22/12/125007

    Article  Google Scholar 

  150. Han MW, Rodrigue H, Il Kim H, Song SH, Ahn SH (2016) Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles. Compos Struct 140:202–212. https://doi.org/10.1016/j.compstruct.2015.12.051

    Article  Google Scholar 

  151. Ahn SH, Lee KT, Kim HJ, Wu R, Kim JS, Song SH (2012) Smart soft composite: an integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. Int J Precis Eng Manuf 13(4):631–634. https://doi.org/10.1007/s12541-012-0081-8

    Article  Google Scholar 

  152. Rodrigue H, Wang W, Han MW, Quan YJ, Ahn SH (2016) Comparison of mold designs for SMA-based twisting soft actuator. Sens Actuators A Phys 237:96–106. https://doi.org/10.1016/j.sna.2015.11.026

    Article  CAS  Google Scholar 

  153. Rodrigue H, Wang W, Bhandari B, Han MW, Ahn SH (2014) Cross-shaped twisting structure using SMA-based smart soft composite. Int J Precis Eng Manuf Green Technol 1(2):153–156. https://doi.org/10.1007/s40684-014-0020-5

    Article  Google Scholar 

  154. Thalman C, Artemiadis P (2020) A review of soft wearable robots that provide active assistance: trends, common actuation methods, fabrication, and applications. Wearable Technol 1:1–27. https://doi.org/10.1017/wtc.2020.4

    Article  Google Scholar 

  155. Xiloyannis M et al (2019) Design and validation of a modular one-to-many actuator for a soft wearable exosuit. Front Neurorobot 13:1–14. https://doi.org/10.3389/fnbot.2019.00039

    Article  Google Scholar 

  156. Popov D, Gaponov I, Ryu JH (2017) Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans Mechatron 22(2):865–875. https://doi.org/10.1109/TMECH.2016.2641932

    Article  Google Scholar 

  157. Galiana I, Hammond FL, Howe RD, Popovic MB (2012) Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments. In: IEEE international conference on intelligent robots and systems, pp 317–322. https://doi.org/10.1109/IROS.2012.6385786

  158. Bae J et al (2014) Soft exosuit for poststroke gait assistance. IEEE international conference on rehabilitation robotics, pp 131–138

  159. Awad LN et al (2017) A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aai9084

    Article  Google Scholar 

  160. Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. IEEE Int Conf Rehabil Robot. https://doi.org/10.1109/ICORR.2013.6650455

    Article  Google Scholar 

  161. Duvall JC, Schleif N, Dunne LE, Holschuh B (2019) Dynamic compression garments for sensory processing disorder treatment using integrated active materials. J Med Devices Trans ASME. https://doi.org/10.1115/1.4042599

    Article  Google Scholar 

  162. Olson LJ, Moulton HJ (2004) Occupational therapists’ reported experiences using weighted vests with children with specific developmental disorders. Occup Ther Int 11(1):52–66. https://doi.org/10.1002/oti.197

    Article  Google Scholar 

  163. Xiloyannis M, Cappello L, Binh KD, Antuvan CW, Masia L (2017) Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living. J Rehabil Assist Technol Eng 4:205566831668031. https://doi.org/10.1177/2055668316680315

    Article  Google Scholar 

  164. Kiml YG, Xiloyannis M, Accoto D, Masia L (2018) Development of a soft exosuit for industriale applications. In: Proceedings of the IEEE / RAS-EMBS international conference on biomedical robotics and biomechatronics, vol 2018, pp 324–329. https://doi.org/10.1109/BIOROB.2018.8487907

  165. Xiloyannis M, Cappello L, Khanh DB, Yen SC, Masia L (2016) Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In: Proceedings of the IEEE / RAS-EMBS international conference on biomedical robotics and biomechatronics, vol 2016, pp 1213–1219. https://doi.org/10.1109/BIOROB.2016.7523796

  166. Schmidt K et al (2017) The myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Front Neurorobot 11:1–16. https://doi.org/10.3389/fnbot.2017.00057

    Article  Google Scholar 

  167. Rognon C, Ramachandran V, Wu AR, Ijspeert AJ, Floreano D (2019) Haptic feedback perception and learning with cable-driven guidance in exosuit teleoperation of a simulated drone. IEEE Trans Haptics 12(3):375–385. https://doi.org/10.1109/TOH.2019.2925612

    Article  Google Scholar 

  168. Lessard S, Pansodtee P, Robbins A, Trombadore JM, Kurniawan S, Teodorescu M (2018) A soft exosuit for flexible upper-extremity rehabilitation. IEEE Trans Neural Syst Rehabil Eng 26(8):1604–1617. https://doi.org/10.1109/TNSRE.2018.2854219

    Article  Google Scholar 

  169. Xiloyannis M, Chiaradia D, Frisoli A, Masia L (2019) Physiological and kinematic effects of a soft exosuit on arm movements. J Neuroeng Rehabil 16(1):1–15. https://doi.org/10.1186/s12984-019-0495-y

    Article  Google Scholar 

  170. Palli G, Natale C, May C, Melchiorri C, Wurtz T (2013) Modeling and control of the twisted string actuation system. IEEE/ASME Trans Mechatron 18(2):664–673. https://doi.org/10.1109/TMECH.2011.2181855

    Article  Google Scholar 

  171. Gaponov I, Popov D, Ryu JH (2014) Twisted string actuation systems: a study of the mathematical model and a comparison of twisted strings. IEEE/ASME Trans Mechatron 19(4):1331–1342. https://doi.org/10.1109/TMECH.2013.2280964

    Article  Google Scholar 

  172. Gaponov I, Popov D, Lee SJ, Ryu JH (2017) Auxilio: a portable cable-driven exosuit for upper extremity assistance. Int J Control Autom Syst 15(1):73–84. https://doi.org/10.1007/s12555-016-0487-7

    Article  Google Scholar 

  173. Asbeck AT, De Rossi SMM, Holt KG, Walsh CJ (2015) A biologically inspired soft exosuit for walking assistance. Int J Rob Res 34(6):744–762. https://doi.org/10.1177/0278364914562476

    Article  Google Scholar 

  174. Kim J et al (2019) Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 365(6454):668–672. https://doi.org/10.1126/science.aav7536

    Article  CAS  Google Scholar 

  175. Chipka JB, Garcia E, Ball EJ, Meller MA (2016) Modeling and testing of a knitted-sleeve fluidic artificial muscle. Smart Mater Struct 25(11):1–14. https://doi.org/10.1088/0964-1726/25/11/115024

    Article  Google Scholar 

  176. O’Neill C et al (2020) Inflatable soft wearable robot for reducing therapist fatigue during upper extremity rehabilitation in severe stroke. IEEE Robot Autom Lett 5(3):3899–3906. https://doi.org/10.1109/LRA.2020.2982861

    Article  Google Scholar 

  177. Natividad RF, Del Rosario MR, Chen PCY, Yeow CH (2017) A hybrid plastic-fabric soft bending actuator with reconfigurable bending profiles. In: Proceedings—IEEE international conference on robotics and automation, pp 6700–6705. https://doi.org/10.1109/ICRA.2017.7989792

  178. Bryant M, Meller MA, Garcia E (2014) Variable recruitment fluidic artificial muscles: modeling and experiments. Smart Mater Struct. https://doi.org/10.1088/0964-1726/23/7/074009

    Article  Google Scholar 

  179. Yang M, Wu J, Jiang W, Hu X, Iqbal MI, Sun F (2023) Bioinspired and Hierarchically Textile‐Structured Soft Actuators for Healthcare Wearables. Adv Funct Mater 33(5):2210351. https://doi.org/10.1002/adfm.202210351

  180. Malcolm P, Derave W, Galle S, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8(2):1–7. https://doi.org/10.1371/journal.pone.0056137

    Article  CAS  Google Scholar 

  181. Wehner M et al (2014) Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot 1(4):263–274. https://doi.org/10.1089/soro.2014.0018

    Article  Google Scholar 

  182. Wang J, Fei Y, Chen W (2020) Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robot 7(2):140–154. https://doi.org/10.1089/soro.2019.0023

    Article  Google Scholar 

  183. Menguc Y et al ( 2013) Soft wearable motion sensing suit for lower limb biomechanics measurements. In: Proceedings—IEEE international conference on robotics and automation, pp 5309–5316. https://doi.org/10.1109/ICRA.2013.6631337

  184. Zhu Y, Gong W, Chu K, Wang X, Hu Z, Su H (2022) A novel wearable soft glove for hand rehabilitation and assistive grasping. Sensors. https://doi.org/10.3390/s22166294

    Article  Google Scholar 

  185. Belforte G, Eula G, Ivanov A, Raparelli T, Sirolli S (2018) Presentation of textile pneumatic muscle prototypes applied in an upper limb active suit experimental model. J Text Inst 109(6):757–766. https://doi.org/10.1080/00405000.2017.1368111

    Article  Google Scholar 

  186. Hershkovitz PE (1988) United States Patent (19), no 19

  187. Marshall R et al (2023) Mechanical Characterisation of Woven Pneumatic Active Textile. IEEE Robot. Autom 8(5):2804-2811. https://doi.org/10.1109/LRA.2023.3262177

  188. Naclerio ND, Hawkes EW (2020) Simple, low-hysteresis, foldable, fabric pneumatic artificial muscle. IEEE Robot Autom Lett 5(2);3406-3413. https://doi.org/10.1109/LRA.2020.2976309

  189. Mettam AR (1964) Inflatable servo actuators, https://reports.aerade.cranfield.ac.uk/bitstream/handle/1826.2/684/arc-cp-0671.pdf?sequence=1

  190. Niiyama R, Sun X, Sung C, An B, Rus D, Kim S (2015) Pouch motors: printable soft actuators integrated with computational design. Soft Robot 2(2):59–70. https://doi.org/10.1089/soro.2014.0023

    Article  Google Scholar 

  191. Thalman CM, Hertzell T, Lee H (2020) Toward a soft robotic ankle-foot orthosis (SR-AFO) exosuit for human locomotion: preliminary results in late stance plantarflexion assistance. In: 2020 3rd IEEE international conference on soft robotics, RoboSoft 2020, pp 801–807.https://doi.org/10.1109/RoboSoft48309.2020.9116050

  192. Adams W, Sridar S, Thalman CM, Copenhaver B, Elsaad H, Polygerinos P (2018) Water pipe robot utilizing soft inflatable actuators. In: 2018 IEEE international conference on soft robotics, RoboSoft 2018, pp 321–326. https://doi.org/10.1109/ROBOSOFT.2018.8404939

  193. Daerden F, Lefeber D (2001) The concept and design of pleated pneumatic artificial muscles. Int J Fluid Power 2(3):41–50. https://doi.org/10.1080/14399776.2001.10781119

    Article  Google Scholar 

  194. Sridar S, Veale AJ, Sartori M, Van Der Kooij H (2023) Exploiting a simple asymmetric pleating method to realize a textile based bending actuator. IEEE Robot Autom Lett 8(3):1794–1801

    Article  Google Scholar 

  195. Khin PM, Yap HK, Ang MH, Yeow CH (2017) Fabric-based actuator modules for building soft pneumatic structures with high payload-to-weight ratio. In: IEEE international conference on intelligent robots and systems, vol 2017, pp 2744–2750. https://doi.org/10.1109/IROS.2017.8206102

  196. Yang HD, Asbeck AT (2018) A new manufacturing process for soft robots and soft/rigid hybrid robots.In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 2018, pp. 8039-8046. https://doi.org/10.1109/IROS.2018.8593688

  197. Felt W, Robertson MA, Paik J (2018) Modeling vacuum bellows soft pneumatic actuators with optimal mechanical performance. In: 2018 IEEE international conference on soft robotics, RoboSoft 2018, pp 534–540. https://doi.org/10.1109/ROBOSOFT.2018.8405381

  198. Abrar T, Putzu F, Konstantinova J, Althoefer K (2019) EPAM: eversive pneumatic artificial muscle. In: RoboSoft 2019-2019 IEEE international conference on soft robotics, pp 19–24. https://doi.org/10.1109/ROBOSOFT.2019.8722787

  199. Quevedo-moreno D, Roche ET (2023) Design and modeling of fabric-shelled pneumatic bending soft actuators. IEEE Robot Autom Lett 8(6):3110–3117

    Article  Google Scholar 

  200. Granberry R, Abel J, Holschuh B (2017) Active knit compression stockings for the treatment of orthostatic hypotension. In: Proceedings. International symposium on wearable computers, ISWC, vol Part F1305, pp 186–191. https://doi.org/10.1145/3123021.3123065

  201. Kim C et al (2020) Shape memory alloy actuator-embedded smart clothes for ankle assistance. Smart Mater Struct 29(5):55003. https://doi.org/10.1088/1361-665X/ab78b5

    Article  Google Scholar 

  202. Granberry R, Eschen K, Holschuh B, Abel J (2019) Functionally graded knitted actuators with NiTi-based shape memory alloys for topographically self-fitting wearables. Adv Mater Technol 4(11):1–11. https://doi.org/10.1002/admt.201900548

    Article  CAS  Google Scholar 

  203. Kim S, Hawkes E, Cho K, Jolda M, Foley J, Wood R (2009) Micro artificial muscle fiber using NiTi spring for soft robotics. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, pp 2228–2234. https://doi.org/10.1109/IROS.2009.5354178

  204. Yuen M, Cherian A, Case JC, Seipel J, Kramer RK (2014) Conformable actuation and sensing with robotic fabric. In: IEEE international conference on intelligent robots and systems, pp 580–586. https://doi.org/10.1109/IROS.2014.6942618

  205. Foo EW, Lee JW, Compton C, Ozbek S, Holschuh B (2019) User experiences of garment-based dynamic compression for novel haptic applications. In: Proceedings—international symposium on wearable computers, ISWC, pp 54–59. https://doi.org/10.1145/3341163.3347732

  206. Holschuh B, Newman D (2015) Two-spring model for active compression textiles with integrated NiTi coil actuators. Smart Mater Struct 24(3):35011. https://doi.org/10.1088/0964-1726/24/3/035011

    Article  CAS  Google Scholar 

  207. Holschuh B, Obropta E, Newman D (2015) Low spring index NiTi coil actuators for use in active compression garments. IEEE/ASME Trans Mechatron 20(3):1264–1277. https://doi.org/10.1109/TMECH.2014.2328519

    Article  Google Scholar 

  208. Granberry R, Holschuh B, Abel J (2019) Experimental investigation of the mechanisms and performance of active auxetic and shearing textiles. In: ASME 2019 conference on smart materials, adaptive structures and intelligent systems, SMASIS 2019, pp 1–21. https://doi.org/10.1115/SMASIS2019-5661

  209. Lee JW, Yun KS (2017) ECG monitoring garment using conductive carbon paste for reduced motion artifacts. Polymers (Basel) 9(9):1–14. https://doi.org/10.3390/polym9090439

    Article  CAS  Google Scholar 

  210. Jung HC et al (2012) CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng 59(5):1472–1479. https://doi.org/10.1109/TBME.2012.2190288

    Article  Google Scholar 

  211. Pang C et al (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801. https://doi.org/10.1038/nmat3380

    Article  CAS  Google Scholar 

  212. Boutry CM, Nguyen A, Lawal QO, Chortos A, Rondeau-Gagné S, Bao Z (2015) A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv Mater 27(43):6954–6961. https://doi.org/10.1002/adma.201502535

    Article  CAS  Google Scholar 

  213. Lo Presti D et al (2019) Cardio-respiratory monitoring in archery using a smart textile based on flexible fiber bragg grating sensors. Sensors. https://doi.org/10.3390/s19163581

    Article  Google Scholar 

  214. Lo Presti D et al (2019) Cardiac monitoring with a smart textile based on polymer-encapsulated FBG: influence of sensor positioning. In: Medical measurements and applications, MeMeA 2019-symposium—proceedings, pp 1–6. https://doi.org/10.1109/MeMeA.2019.8802157

  215. Shathi MA, Chen M, Khoso NA, Rahman MT, Bhattacharjee B (2020) Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Mater Des 193:108792. https://doi.org/10.1016/j.matdes.2020.108792

    Article  CAS  Google Scholar 

  216. Davis CL, Kao TJ, Obi A, Rao AV, Stoffel N (2020) Textile based sensing blanket for ECG monitoring in the intensive care unit. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, vol 2020, pp 4551–4554. https://doi.org/10.1109/EMBC44109.2020.9176071

  217. Koyama Y, Nishiyama M, Watanabe K (2018) Smart textile using hetero-core optical fiber for heartbeat and respiration monitoring. IEEE Sens J 18(15):6175–6180. https://doi.org/10.1109/JSEN.2018.2847333

    Article  CAS  Google Scholar 

  218. Takeshita T et al (2019) Relationship between contact pressure and motion artifacts in ECG measurement with electrostatic flocked electrodes fabricated on textile. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-42027-x

    Article  CAS  Google Scholar 

  219. Carbonaro N, Laurino M, Arcarisi L, Menicucci D, Gemignani A, Tognetti A (2021) Textile-based pressure sensing matrix for in-bed monitoring of subject sleeping posture and breathing activity. Appl Sci. https://doi.org/10.3390/app11062552

    Article  Google Scholar 

  220. Bae GY et al (2016) Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28(26):5300–5306. https://doi.org/10.1002/adma.201600408

    Article  CAS  Google Scholar 

  221. Ghosh SK, Mandal D (2017) Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring. ACS Sustain Chem Eng 5(10):8836–8843. https://doi.org/10.1021/acssuschemeng.7b01617

    Article  CAS  Google Scholar 

  222. Seshadri DR et al (2019) Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit Med. https://doi.org/10.1038/s41746-019-0149-2

    Article  Google Scholar 

  223. Fayyaz Shahandashti P, Pourkheyrollah H, Jahanshahi A, Ghafoorifard H (2019) Highly conformable stretchable dry electrodes based on inexpensive flex substrate for long-term biopotential (EMG/ECG) monitoring. Sens Actuators A Phys 295:678–686. https://doi.org/10.1016/j.sna.2019.06.041

    Article  CAS  Google Scholar 

  224. Webb R, Bonifas A, Behnaz A et al (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Mater 12:938–944. https://doi.org/10.1038/nmat3755

  225. Zeng Y, Lu G, Wang H, Du J, Ying Z, Liu C (2014) Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Sci Rep 4:1–7. https://doi.org/10.1038/srep06684

    Article  CAS  Google Scholar 

  226. Honda W, Harada S, Arie T, Akita S, Takei K (2014) Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv Funct Mater 24(22):3299–3304. https://doi.org/10.1002/adfm.201303874

    Article  CAS  Google Scholar 

  227. Hong SY et al (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28(5):930–935. https://doi.org/10.1002/adma.201504659

    Article  CAS  Google Scholar 

  228. Wu X et al (2015) Thermally stable, biocompatible, and flexible organic field effect transistors and their application in temperature sensing arrays for artificial skin. Adv Funct Mater 25(14):2138–2146. https://doi.org/10.1002/adfm.201404535

    Article  CAS  Google Scholar 

  229. Chen Y, Lu B, Chen Y, Feng X (2015) Breathable and stretchable temperature sensors inspired by skin. Sci Rep 5:1–11. https://doi.org/10.1038/srep11505

    Article  Google Scholar 

  230. Wang L, Lou Z, Jiang K, Shen G (2019) Bio-multifunctional smart wearable sensors for medical devices. Adv Intell Syst 1(5):1900040. https://doi.org/10.1002/aisy.201900040

    Article  Google Scholar 

  231. Yamada T et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301. https://doi.org/10.1038/nnano.2011.36

    Article  CAS  Google Scholar 

  232. Abro ZA, Yi-Fan Z, Nan-Liang C, Cheng-Yu H, Lakho RA, Halepoto H (2019) A novel flex sensor-based flexible smart garment for monitoring body postures. J Ind Text 49(2):262–274. https://doi.org/10.1177/1528083719832854

    Article  Google Scholar 

  233. Cheng-Yu H, Ahmed Abro Z, Yi-Fan Z, Ahmed Lakho R (2021) An FBG-based smart wearable ring fabricated using FDM for monitoring body joint motion. J Ind Text 50(10):1660–1673. https://doi.org/10.1177/1528083719870204

    Article  CAS  Google Scholar 

  234. Eom J et al (2017) Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Interfaces 9(11):10190–10197. https://doi.org/10.1021/acsami.7b01771

    Article  CAS  Google Scholar 

  235. Park H et al (2015) Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 9(10):9974–9985. https://doi.org/10.1021/acsnano.5b03510

    Article  CAS  Google Scholar 

  236. Ding Y, Yang J, Tolle CR, Zhu Z (2018) Flexible and compressible PEDOT:PSS@Melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl Mater Interfaces 10(18):16077–16086. https://doi.org/10.1021/acsami.8b00457

    Article  CAS  Google Scholar 

  237. Sun R, Sosnoff JJ (2018) Novel sensing technology in fall risk assessment in older adults: a systematic review. BMC Geriatr. https://doi.org/10.1186/s12877-018-0706-6

    Article  Google Scholar 

  238. Patel M, Pavic A, Goodwin VA (2020) Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: a scoping review. Gait Posture 76:110–121. https://doi.org/10.1016/j.gaitpost.2019.10.039

    Article  Google Scholar 

  239. Qiu H, Zia R, Rehman U, Yu X, Xiong S (2018) Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. https://doi.org/10.1038/s41598-018-34671-6

    Article  Google Scholar 

  240. Li T, Li J, Zhong A, Han F, Sun R, Wong C (2020) A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sens Actuators A Phys 306:111959. https://doi.org/10.1016/j.sna.2020.111959

    Article  CAS  Google Scholar 

  241. Georgi M, Amma C, Schultz T (2015) Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing. In: BIOSIGNALS 2015—8th international conference on bio-inspired systems and signal processing. Proceedings; Part 8th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2015, pp 99–108. https://doi.org/10.5220/0005276900990108

  242. Li Y, Zheng L, Wang X (2019) Flexible and wearable healthcare sensors for visual reality health-monitoring. Virtual Real Intell Hardw 1(4):411–427. https://doi.org/10.1016/j.vrih.2019.08.001

    Article  Google Scholar 

  243. Ramasamy S, Balan A (2018) Wearable sensors for ECG measurement: a review. Sens Rev 38(4):412–419. https://doi.org/10.1108/SR-06-2017-0110

    Article  Google Scholar 

  244. Hassan MM, Uddin MZ, Mohamed A, Almogren A (2018) A robust human activity recognition system using smartphone sensors and deep learning. Future Gener Comput Syst 81:307–313. https://doi.org/10.1016/j.future.2017.11.029

    Article  Google Scholar 

  245. Gjoreski H, Gams M (2011) Activity/posture recognition using wearable sensors placed on different body locations. In: Proceedings of the IASTED international conference on artificial intelligence and soft computing, ASC 2011, pp 340–347. https://doi.org/10.2316/P.2011.716-067

  246. Anwary AR, Yu H, Vassallo M (2018) An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors. https://doi.org/10.3390/s18020676

    Article  Google Scholar 

  247. Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I (2006) Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed 10(1):119–128. https://doi.org/10.1109/TITB.2005.856863

    Article  Google Scholar 

  248. Bhattacharya S, Lane ND (2016) From smart to deep: robust activity recognition on smartwatches using deep learning. In: 2016 IEEE international conference on pervasive computing and communication workshops, PerCom Work. 2016. https://doi.org/10.1109/PERCOMW.2016.7457169

  249. Chernbumroong S, Cang S, Yu H (2014) A practical multi-sensor activity recognition system for home-based care. Decis Support Syst 66:61–70. https://doi.org/10.1016/j.dss.2014.06.005

    Article  Google Scholar 

  250. Cooper CB et al (2017) Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv Funct Mater. https://doi.org/10.1002/adfm.201605630

    Article  Google Scholar 

  251. Shang Y et al (2013) Highly twisted double-helix carbon nanotube yarns. ACS Nano 7(2):1446–1453. https://doi.org/10.1021/nn305209h

    Article  CAS  Google Scholar 

  252. Huang CT, Shen CL, Tang CF, Chang SH (2008) A wearable yarn-based piezo-resistive sensor. Sens Actuators A Phys 141(2):396–403. https://doi.org/10.1016/j.sna.2007.10.069

    Article  CAS  Google Scholar 

  253. Cheng Y et al (2017) Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy 34:562–569. https://doi.org/10.1016/j.nanoen.2017.03.011

    Article  CAS  Google Scholar 

  254. Wang JP, Xue P, Tao XM (2011) Strain sensing behavior of electrically conductive fibers under large deformation. Mater Sci Eng A 528(6):2863–2869. https://doi.org/10.1016/j.msea.2010.12.057

    Article  CAS  Google Scholar 

  255. Xue P, Tao XM, Tsang HY (2007) In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Appl Surf Sci 253(7):3387–3392. https://doi.org/10.1016/j.apsusc.2006.07.003

    Article  CAS  Google Scholar 

  256. Abdul Samad Y et al (2017) From sewing thread to sensor: Nylon® fiber strain and pressure sensors. Sens Actuators B Chem 240:1083–1090. https://doi.org/10.1016/j.snb.2016.09.088

    Article  CAS  Google Scholar 

  257. Wu X, Han Y, Zhang X, Lu C (2016) Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl Mater Interfaces 8(15):9936–9945. https://doi.org/10.1021/acsami.6b01174

    Article  CAS  Google Scholar 

  258. Niu B et al (2019) A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. J Mater Chem C 7(46):14651–14663. https://doi.org/10.1039/c9tc04006d

    Article  CAS  Google Scholar 

  259. Wang X, Qiu Y, Cao W, Hu P (2015) Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem Mater 27(20):6969–6975. https://doi.org/10.1021/acs.chemmater.5b02098

    Article  CAS  Google Scholar 

  260. Lai YC, Deng J, Zhang SL, Niu S, Guo H, Wang ZL (2017) Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater 27(1):1–10. https://doi.org/10.1002/adfm.201604462

    Article  CAS  Google Scholar 

  261. Gao Y et al (2020) Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano 14(3):3442–3450. https://doi.org/10.1021/acsnano.9b09533

    Article  CAS  Google Scholar 

  262. Takamatsu S, Kobayashi T, Shibayama N, Miyake K, Itoh T (2012) Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sens Actuators A Phys 184:57–63. https://doi.org/10.1016/j.sna.2012.06.031

    Article  CAS  Google Scholar 

  263. Enokibori Y, Suzuki A, Mizuno H, Shimakami Y, Mase K (2013) E-textile pressure sensor based on conductive fiber and its structure. In: UbiComp 2013 Adjun-2013 ACM conference on pervasive and ubiquitous computing adjunct publication, pp 207–210. https://doi.org/10.1145/2494091.2494158

  264. Lee J et al (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27(15):2433–2439. https://doi.org/10.1002/adma.201500009

    Article  CAS  Google Scholar 

  265. Ashok Kumar L, Vigneswaran C, Ramachandran T (2010) Development of signal transferring fabrics using plastic optical fibers for defense personnel and study their performance. J Ind Text 39(4):305–326. https://doi.org/10.1177/1528083709349879

    Article  CAS  Google Scholar 

  266. Masuda A, Murakami T, Honda K, Yamaguchi S (2006) Optical properties of woven fabrics by plastic optical fiber. J Text Eng 52(3):93–97. https://doi.org/10.4188/jte.52.93

    Article  Google Scholar 

  267. Yang X et al (2015) Textile fiber optic microbend sensor used for heartbeat and respiration monitoring. IEEE Sens J 15(2):757–761. https://doi.org/10.1109/JSEN.2014.2353640

    Article  Google Scholar 

  268. Quandt BM et al (2017) POF-yarn weaves: controlling the light out-coupling of wearable phototherapy devices. Biomed Opt Express 8(10):4316. https://doi.org/10.1364/boe.8.004316

    Article  CAS  Google Scholar 

  269. Dong K et al (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29(38):1–11. https://doi.org/10.1002/adma.201702648

    Article  CAS  Google Scholar 

  270. Catrysse M, Puers R, Hertleer C, Van Langenhove L, Van Egmond H, Matthys D (2004) Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A Phys 114(2–3):302–311. https://doi.org/10.1016/j.sna.2003.10.071

    Article  CAS  Google Scholar 

  271. Zhang H, Tao X, Yu T, Wang S (2006) Conductive knitted fabric as large-strain gauge under high temperature. Sens Actuators A Phys 126(1):129–140. https://doi.org/10.1016/j.sna.2005.10.026

    Article  CAS  Google Scholar 

  272. Scilingo EP, Lorussi F, Mazzoldi A, De Rossi D (2003) Strain sensing fabrics. Pdf. IEEE Sens J 3(4):460–467

    Article  Google Scholar 

  273. Qureshi W, Guo L, Peterson J, Berglin L, Skrifvars M (2011) Knitted wearable stretch sensor for breathing monitoring application. In: Ambience, Borås, Sweden, 2011. https://www.divaportal.org/smash/get/diva2:887398/FULLTEXT01.pdf

  274. Paradiso R, Loriga G, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed 9(3):337–344. https://doi.org/10.1109/TITB.2005.854512

    Article  Google Scholar 

  275. Pacelli M, Caldani L, Paradiso R (2006) Textile piezoresistive sensors for biomechanical variables monitoring. In: Annual international conference of the IEEE engineering in medicine and biology society—Proceedings, pp 5358–5361. https://doi.org/10.1109/IEMBS.2006.259287

  276. Xie J, Long H, Miao M (2016) High sensitivity knitted fabric strain sensors. Smart Mater Struct 25(10):1–7. https://doi.org/10.1088/0964-1726/25/10/105008

    Article  CAS  Google Scholar 

  277. Pacelli M, Loriga G, Taccini N, Paradiso R (2006) Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions. In: Proceedings of the 3rd IEEE-EMBS international summer school on medical devices and biosensors, ISSS-MDBS 2006, pp 1–4. https://doi.org/10.1109/ISSMDBS.2006.360082

  278. Seyedin S, Moradi S, Singh C, Razal JM (2018) Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Appl Mater Today 11:255–263. https://doi.org/10.1016/j.apmt.2018.02.012

    Article  Google Scholar 

  279. Seyedin S, Razal JM, Innis PC, Jeiranikhameneh A, Beirne S, Wallace GG (2015) Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl Mater Interfaces 7(38):21150–21158. https://doi.org/10.1021/acsami.5b04892

    Article  CAS  Google Scholar 

  280. Zhang H, Tao X, Wang S, Yu T (2005) Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Text Res J 75(8):598–606. https://doi.org/10.1177/0040517505056870

    Article  CAS  Google Scholar 

  281. Xie J, Long H (2014) Equivalent resistance calculation of knitting sensor under strip biaxial elongation. Sens Actuators A Phys 220:118–125. https://doi.org/10.1016/j.sna.2014.09.028

    Article  CAS  Google Scholar 

  282. Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403. https://doi.org/10.1016/j.cej.2017.05.091

    Article  CAS  Google Scholar 

  283. Ou J, Oran D, Haddad DD, Paradiso J, Ishii H (2019) SensorKnit: architecting textile sensors with machine knitting. 3D Print Addit Manuf 6(1):1–11. https://doi.org/10.1089/3dp.2018.0122

    Article  Google Scholar 

  284. Jamil B, Lee S, Choi Y (2019) Fabrication, characterization and control of knit-covered pneumatic artificial muscle. IEEE Access 7:84770–84783. https://doi.org/10.1109/ACCESS.2019.2925682

    Article  Google Scholar 

  285. Jamil B, Lee S, Choi Y, Conductive knit-covered pneumatic artificial muscle (k-PAM) actuator (2018). In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp 1476-1481. https://doi.org/10.1109/IROS.2018.8594510

  286. Kim K et al (2019) Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Mater Struct 28:065019. https://doi.org/10.1088/1361-665X/ab1adf

  287. Wijesiriwardana R (2006) Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sens J 6(3):571–579. https://doi.org/10.1109/JSEN.2006.874488

    Article  Google Scholar 

  288. Fan W et al (2020) Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 6:1–11

    Article  Google Scholar 

  289. Gioberto G, Dunne L (2012) Theory and characterization of a top-thread coverstitched stretch sensor. In: IEEE international conference on systems, man, and cybernetics, pp 3275–3280. https://doi.org/10.1109/ICSMC.2012.6378296

  290. Gioberto G, Coughlin J, Bibeau K, Dunne LE (2013) Detecting bends and fabric folds using stitched sensors. In: ISWC 2013—proceedings of the 2013 ACM international symposium on wearable computers, pp 53–56. https://doi.org/10.1145/2493988.2494355

  291. Gioberto G, Dunne LE (2014) Garment-integrated bend sensor. Electron 3(4):564–581. https://doi.org/10.3390/electronics3040564

    Article  Google Scholar 

  292. Paternò L, Lorenzon L (2023) Soft robotics in wearable and implantable medical applications: translational challenges and future outlooks, pp 1–7. https://doi.org/10.3389/frobt.2023.1075634

  293. Ghosh, Das NC (2023) Characterization of various polymer composite sensors. Poly Nanocompo Mat for Sens App, pp 121-140. https://doi.org/10.1016/B978-0-323-98830-8.00004-7

  294. Wehner M et al (2013) A lightweight soft exosuit for gait assistance. In: 2013 IEEE international conference on robotics and automation, 2013, IEEE, pp 3362-3369. https://doi.org/10.1109/ICRA.2013.6631046

  295. Sridar S, Member S, Nguyen PH, Member S, Zhu M (2017) Development of a soft-inflatable exosuit for knee rehabilitation. https://doi.org/10.1109/IROS.2017.8206220

  296. Panizzolo FA et al (2016) A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil. https://doi.org/10.1186/s12984-016-0150-9

    Article  Google Scholar 

  297. Jin S, Iwamoto N, Hashimoto K, Yamamoto M (2017) Experimental evaluation of energy efficiency for a soft wearable robotic suit. IEEE Trans Neural Syst Rehabil Eng 25(8):1192–1201. https://doi.org/10.1109/TNSRE.2016.2613886

    Article  Google Scholar 

  298. Quinlivan BT et al (2017) Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci Robot. https://doi.org/10.1126/scirobotics.aah4416

    Article  Google Scholar 

  299. Ding Y et al (2017) Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits. IEEE Trans Neural Syst Rehabil Eng 25(2):119–130. https://doi.org/10.1109/TNSRE.2016.2523250

    Article  Google Scholar 

  300. Veale AJ, Staman K, Van Der Kooij H (2021) Soft, wearable, and pleated pneumatic interference actuator provides knee extension torque for sit-to-stand. Soft Robot 8(1):28–43. https://doi.org/10.1089/soro.2019.0076

    Article  Google Scholar 

  301. Stirling L et al (2011) Applicability of shape memory alloy wire for an active, soft orthotic. J Mater Eng Perform 20(4–5):658–662. https://doi.org/10.1007/s11665-011-9858-7

    Article  CAS  Google Scholar 

  302. Park SJ, Park CH (2019) Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci Rep 9(1):1–8. https://doi.org/10.1038/s41598-019-45722-x

    Article  CAS  Google Scholar 

  303. Yorkston KM, Chan L (2012) The role of English in German Education.pdf, 89(7):1256–1261. https://doi.org/10.1016/j.apmr.2007.11.038.Managing

  304. Ashdown SP (2011) Improving body movement comfort in apparel. Elsevier, New York. https://doi.org/10.1533/9780857090645.2.278

    Book  Google Scholar 

  305. Helps T, Taghavi M, Manns S, Turton AJ, Rossiter J (2018) Easy undressing with soft robotics. Lecture Notes in Computer Science (including its subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 10965 LNAI, pp 79–90. https://doi.org/10.1007/978-3-319-96728-8_7

  306. Granberry R (2017) Functionally graded knitted actuators with NiTi-based shape memory alloys for topographically self-fitting wearables. AIMS Geosci 3(2):163–186. https://doi.org/10.1002/admt.201900548.Functionally

    Article  Google Scholar 

  307. Cool JC (1989) Biomechanics of orthoses for the subluxed shoulder. Prosthet Orthot Int 13(2):90–96. https://doi.org/10.3109/03093648909078219

    Article  CAS  Google Scholar 

  308. Holloway GA, Daly CH, Kennedy D, Chimoskey J (1976) Effects of external pressure loading on human skin blood flow measured by 133Xe clearance. J Appl Physiol 40(4):597–600. https://doi.org/10.1152/jappl.1976.40.4.597

    Article  CAS  Google Scholar 

  309. Tessmer L, Dunlap C, Sparrman B, Kernizan S, Laucks J, Tibbits S (2019) Active textile tailoring. In: ACM SIGGRAPH 2019 emerging technologies, SIGGRAPH 2019. https://doi.org/10.1145/3305367.3327995

  310. Cappello L et al (2018) Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J Neuroeng Rehabil 15(1):1–10. https://doi.org/10.1186/s12984-018-0391-x

    Article  Google Scholar 

  311. Zhou YM et al (2019) Soft robotic glove with integrated sensing for intuitive grasping assistance post spinal cord injury. In: Proceedings—IEEE international conference on robotics and automation, vol 2019, pp 9059–9065. https://doi.org/10.1109/ICRA.2019.8794367

  312. Stilli A et al (2018) AirExGlove: a novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients. In: 2018 IEEE international conference on soft robotics, RoboSoft 2018, pp 579–584. https://doi.org/10.1109/ROBOSOFT.2018.8405388

  313. Choi H, Kang BB, Jung B, Cho K (2019) Exo-wrist: a soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients. IEEE Robot Autom Lett 4(4):4499-4506. https://doi.org/10.1109/LRA.2019.2931607

  314. Литoвцы (2018) Authors : Ac ce d M us pt. 2D Mater, pp 0–23. https://doi.org/10.1088/2053-1583/abe778

  315. Abe T et al (2019) Fabrication of ‘18 weave’ muscles and their application to soft power support suit for upper limbs using Thin McKibben Muscle. IEEE Robot Autom Lett 4(3):2532–2538. https://doi.org/10.1109/LRA.2019.2907433

    Article  Google Scholar 

  316. PérezVidal AF et al (2021) Soft exoskeletons: development, requirements, and challenges of the last decade. Actuators 10(7):1–26. https://doi.org/10.3390/act10070166

    Article  Google Scholar 

  317. Natividad RF, Yeow CH (2016) Development of a soft robotic shoulder assistive device for shoulder abduction. In: Proceedings of the IEEE RAS EMBS international conference on biomedical robotics and biomechatronics, vol 2016, pp 989–993. https://doi.org/10.1109/BIOROB.2016.7523758

  318. Galiana I, Hammond FL, Howe RD, Popovic MB (2012 Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, IEEE, pp 317-322. https://doi.org/10.1109/IROS.2012.6385786

  319. Correia C et al (2020) Improving grasp function after spinal cord injury with a soft robotic glove. IEEE Trans Neural Syst Rehabil Eng 28(6):1407–1415. https://doi.org/10.1109/TNSRE.2020.2988260

    Article  Google Scholar 

  320. Polygerinos P, Galloway KC, Sanan S, Herman M, Walsh CJ (2015) EMG controlled soft robotic glove for assistance during activities of daily living. In: IEEE international conference on rehabilitation robotics, vol 2015, pp 55–60. https://doi.org/10.1109/ICORR.2015.7281175

  321. Chen X et al (2021) A wearable hand rehabilitation system with soft gloves. IEEE Trans Ind Inform 17(2):943–952. https://doi.org/10.1109/TII.2020.3010369

    Article  Google Scholar 

  322. Smaby N, Johanson ME, Baker B, Kenney DE, Murray WM, Hentz VR (2004) Identification of key pinch forces required to complete functional tasks. J Rehabil Res Dev 41(2):215–223. https://doi.org/10.1682/JRRD.2004.02.0215

    Article  Google Scholar 

  323. Murray IA, Johnson GR (2004) A study of the external forces and moments at the shoulder and elbow while performing every day tasks. Clin Biomech 19(6):586–594. https://doi.org/10.1016/j.clinbiomech.2004.03.004

    Article  Google Scholar 

  324. Zeng H, Zhao Y (2011) Sensing movement: microsensors for body motion measurement. Sensors 11(1):638–660. https://doi.org/10.3390/s110100638

    Article  Google Scholar 

  325. Agarwal P, Fox J, Yun Y, O’Malley MK, Deshpande AD (2015) An index finger exoskeleton with series elastic actuation for rehabilitation: design, control and performance characterization. Int J Rob Res 34(14):1747–1772. https://doi.org/10.1177/0278364915598388

    Article  Google Scholar 

  326. McGorry RW, Lin JH (2012) Flexion relaxation and its relation to pain and function over the duration of a back pain episode. PLoS ONE. https://doi.org/10.1371/journal.pone.0039207

    Article  Google Scholar 

  327. Powers WJ et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke a guideline for healthcare professionals from the American Heart Association/American Stroke A, vol 50, no 12. https://doi.org/10.1161/STR.0000000000000211

  328. Schabowsky CN, Godfrey SB, Holley RJ, Lum PS (2010) Development and pilot testing of HEXORR: hand exoskeleton rehabilitation robot. J Neuroeng Rehabil 7(1):1–16. https://doi.org/10.1186/1743-0003-7-36

    Article  Google Scholar 

  329. Khalid S, Alnajjar F, Gochoo M, Shimoda S (2021) Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol. https://doi.org/10.1080/17483107.2021.1906960

    Article  Google Scholar 

  330. Biggar S, Yao W (2016) Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Trans Neural Syst Rehabil Eng 24(10):1071–1080. https://doi.org/10.1109/TNSRE.2016.2521544

    Article  Google Scholar 

  331. Wang L et al (2019) Soft robotics for hand rehabilitation. Elsevier, New York. https://doi.org/10.1016/B978-0-12-814942-3.00010-6

    Book  Google Scholar 

  332. Xiong J, Chen J, Lee PS (2021) Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv Mater 33(19):1–43. https://doi.org/10.1002/adma.202002640

    Article  CAS  Google Scholar 

  333. Cao X, Ma K, Jiang Z, Xu F (2021) A soft robotic glove for hand rehabilitation using pneumatic actuators with jamming structure, vol 2021. Springer, Berlin. https://doi.org/10.23919/CCC52363.2021.9550076

    Book  Google Scholar 

  334. Choukou MA, Mbabaali S, Hani JB, Cooke C (2021) Haptic-enabled hand rehabilitation in stroke patients: a scoping review. Appl Sci. https://doi.org/10.3390/app11083712

    Article  Google Scholar 

  335. Grünert-Plüss N, Hufschmid U, Santschi L, Grünert J (2008) Mirror therapy in hand rehabilitation: a review of the literature, the St Gallen protocol for mirror therapy and evaluation of a case series of 52 patients. Br J Hand Ther 13(1):4–11. https://doi.org/10.1177/175899830801300101

    Article  Google Scholar 

  336. Pereira MF, Prahm C, Kolbenschlag J, Oliveira E, Rodrigues NF (2020) Application of AR and VR in hand rehabilitation: a systematic review. J Biomed Inform 111:103584. https://doi.org/10.1016/j.jbi.2020.103584

    Article  Google Scholar 

  337. Levanon Y (2013) The advantages and disadvantages of using high technology in hand rehabilitation. J Hand Ther 26(2):179–183. https://doi.org/10.1016/j.jht.2013.02.002

    Article  Google Scholar 

  338. Biosystems S, Icnr N (2013) Converging clinical and engineering research on neurorehabilitation applied neurophysiology and biomedical engineering. Mater Res Bull 49. https://dais.sanu.ac.rs/handle/123456789/9434

  339. Polygerinos P, Galloway KC, Savage E, Herman M, O’Donnell K, Walsh CJ (2015) Soft robotic glove for hand rehabilitation and task specific training. In: Proceedings—IEEE international conference on robotics and automation, vol 2015, pp 2913–2919. https://doi.org/10.1109/ICRA.2015.7139597

  340. Yap HK, Sebastian F, Wiedeman C, Yeow CH (2017) Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application. In: IEEE international conference on rehabilitation robotics, pp 1465–1470. https://doi.org/10.1109/ICORR.2017.8009454

  341. Chen Y, Yang Z, Wen Y (2021) A soft exoskeleton glove for hand bilateral training via surface EMG. Sensors (Switzerland) 21(2):1–18. https://doi.org/10.3390/s21020578

    Article  CAS  Google Scholar 

  342. Liang X, Yap HK, Guo J, Yeow RCH, Sun Y, Chui CK (2018) Design and characterization of a novel fabric-based robotic arm for future wearable robot application. In: 2017 IEEE international conference on robotics and biomimetics, ROBIO 2017, vol 2018, pp 367–372. https://doi.org/10.1109/ROBIO.2017.8324445.

  343. Realmuto J, Sanger T (2019) A robotic forearm orthosis using soft fabric-based helical actuators significantly decreased subjects’ efforts during both reaching the robot and human joints are misaligned [3], and can add substantial inertia to the segments of the human arm requiring. In: 2019 2nd IEEE international conference on soft robotics, pp 591–596

  344. Wang J, Liu Z, Fei Y (2019) Design and testing of a soft rehabilitation glove integrating finger and wrist function. J Mech Robot. https://doi.org/10.1115/1.4041789

    Article  Google Scholar 

  345. Neumann DA (2010) Kinesiology of the musculoskeletal system: foundations for rehabilitation, vol 14. https://doi.org/10.1016/B978-0-323-03989-5.00015-8

  346. Lee S, Crea S, Malcolm P, Galiana I, Asbeck A, Walsh C (2016) Controlling negative and positive power at the ankle with a soft exosuit. In: Proceedings—IEEE international conference on robotics and automation, vol 2016, pp 3509–3515. https://doi.org/10.1109/ICRA.2016.7487531

  347. Médica E, Isbn P (2010) Biomecánica y Bases Neuromusculares de la Actividad Física y el Deporte. Cult Cienc y Deport 5(13):57–58. https://doi.org/10.12800/ccd.v5i13.251

    Article  Google Scholar 

  348. Institute of Electrical and Electronics Engineers (2018) 2018 IEEE international conference on soft robotics (RoboSoft): 24–28 April 2018, pp 559–564

  349. Di Natali C et al (2019) Design and evaluation of a soft assistive lower limb exoskeleton. Robotica 37(12):2014–2034. https://doi.org/10.1017/S0263574719000067

    Article  Google Scholar 

  350. Elliott G, Sawicki GS, Marecki A, Herr H (2013) The biomechanics and energetics of human running using an elastic knee exoskeleton. In: IEEE international conference on rehabilitation robotics. https://doi.org/10.1109/ICORR.2013.6650418

  351. Teng C, Wong Z, Teh W, Chong YZ (2012) Design and development of inexpensive pneumatically-powered assisted knee-ankle-foot orthosis for gait rehabilitation-preliminary finding. In: 2012 International conference on biomedical engineering, ICoBE 2012, pp 28–32.https://doi.org/10.1109/ICoBE.2012.6178949

  352. Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. In: IEEE international conference on rehabilitation robotics, pp 1–8. https://doi.org/10.1109/ICORR.2013.6650455

  353. Miller-Jackson TM, Li J, Natividad RF, Yeow RCH (2019) STAS: an antagonistic soft pneumatic actuator assembly for high torque output. In: RoboSoft 2019—2019 IEEE International Conference on Soft Robotics, pp 43–48. https://doi.org/10.1109/ROBOSOFT.2019.8722791

  354. Park YL, Santos J, Galloway KG, Goldfield EC, Wood RJ (2014) A soft wearable robotic device for active knee motions using flat pneumatic artificial muscles. In: Proceedings—IEEE international conference on robotics and automation, pp 4805–4810. https://doi.org/10.1109/ICRA.2014.6907562

  355. Browning RC, Modica JR, Kram R, Goswami A (2007) The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 39(3):515–525. https://doi.org/10.1249/mss.0b013e31802b3562

    Article  Google Scholar 

  356. Perez-Ibarra JC, Alarcon ALJ, Jaimes JC, Ortega FME, Terra MH, Siqueira AAG (2017) Design and analysis of H∞ force control of a series elastic actuator for impedance control of an ankle rehabilitation robotic platform. In: Proceedings of the American control conference, pp 2423–2428. https://doi.org/10.23919/ACC.2017.7963316

  357. Hong JC, Fukushima Y, Suzuki S, Yasuda K, Ohashi H, Iwata H (2018) Estimation of ankle dorsiflexion torque during loading response phase for spring coefficient identification. In: 2017 IEEE international conference on robotics and biomimetics, ROBIO 2017, vol 2018, pp 2237–2242. https://doi.org/10.1109/ROBIO.2017.8324751

  358. Asbeck AT, De Rossi SM, Galiana I, Ding Y, Walsh CJ (2014) Stronger, smarter, softer: next-generation wearable robots. IEEE Robot Autom Lett 21(4):22-33, 2014. https://doi.org/10.1109/MRA.2014.2360283

  359. Thalman CM, Lee H (2020) Design and validation of a soft robotic ankle-foot orthosis (SR-AFO) exosuit for inversion and eversion ankle support. In: Proceedings—IEEE international conference on robotics and automation, pp 1735–1741. https://doi.org/10.1109/ICRA40945.2020.9197531

  360. Kwon J, Park JH, Ku S, Jeong YH, Paik NJ, Park YL (2019) A soft wearable robotic ankle-foot-orthosis for post-stroke patients. IEEE Robot Autom Lett 4(3):2547–2552. https://doi.org/10.1109/LRA.2019.2908491

    Article  Google Scholar 

  361. Le Floch P et al (2017) Wearable and washable conductors for active textiles. ACS Appl Mater Interfaces 9(30):25542–25552. https://doi.org/10.1021/acsami.7b07361

    Article  CAS  Google Scholar 

  362. Schwarz A et al (2011) Electro-conductive and elastic hybrid yarns—the effects of stretching, cyclic straining and washing on their electro-conductive properties. Mater Des 32(8–9):4247–4256. https://doi.org/10.1016/j.matdes.2011.04.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express thank and gratitude toward University of South Asia, Dhaka, Bangladesh and Bangladesh University of Textiles, Dhaka, Bangladesh, for providing the necessary support to complete the review work.

Author information

Authors and Affiliations

Authors

Contributions

AZ contributed to conceptualization, data curation, and writing—original draft; MNU contributed to investigation, methodology, and writing—original draft; STM contributed to formal analysis, software, and writing—original draft; PSSP contributed to investigation, resources, and writing—original draft; RM contributed to formal analysis, investigation, and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Akhiri Zannat or Rony Mia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zannat, A., Uddin, M.N., Mahmud, S.T. et al. Review: Textile-based soft robotics for physically challenged individuals. J Mater Sci 58, 12491–12536 (2023). https://doi.org/10.1007/s10853-023-08799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08799-4

Navigation