Skip to main content

Advertisement

Log in

Nonequilibrium VLS-grown stable ST12-Ge thin film on Si substrate: a study on strain-induced band engineering

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current work describes a novel method of growing thin films of stable crystalline ST12-Ge, a high pressure polymorph of Ge, on Si substrate by a nonequilibrium VLS technique. The study explores the scheme of band engineering of ST12-Ge by inducing process stress into it as a function of the growth temperature and film thickness. In the present work, ST12-Ge films are grown at 180–250 °C to obtain thicknesses of ~4.5–7.5 nm, which possess extremely good thermal stability up to a temperature of ~350 °C. Micro-Raman study shows the stress induced in such ST12-Ge films to be compressive in nature and vary in the range of ~0.5–7.5 GPa. The measured direct band gap is observed to vary within 0.688 eV to 0.711 eV for such stresses, and four indirect band gaps are obtained to be 0.583 eV, 0.614–0.628 eV, 0.622–0.63 eV and 0.623–0.632 eV, accordingly. The corresponding band structures for unstrained and strained ST12-Ge are calculated by performing DFT simulation, which shows that a compressive stress transforms the fundamental band gap at M-Γ valley from ‘indirect’ to ‘direct’ one. Henceforth, the possible route of strain-induced band engineering in ST12-Ge is explored by analyzing all the transitions in strained and unstrained band structures along with substantiation of the experimental results and theoretical calculations. The investigation shows that unstrained ST12-Ge is a natural n-type semiconductor which transforms into p-type upon incorporation of a compressive stress of ~5 GPa, with the in-plane electron effective mass components at M-Γ band edge to be ~0.09me. Therefore, such band engineered ST12-Ge exhibits superior mobility along with its thermal stability and compatibility with Si, which can have potential applications to develop high-speed MOS devices for advanced CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data and code availability

The data and code are available on reasonable request from the corresponding author.

References

  1. Scappucci G, Kloeffel C, Zwanenburg FA, Loss D, Myronov M, Zhang J-J, De Franceschi S, Katsaros G, Veldhorst M (2021) The germanium quantum information route. Nat Rev Mater 6(10):926–943

    CAS  Google Scholar 

  2. Hussain, Muhammad Mustafa, (ed) (2019) Advanced nanoelectronics: post-silicon materials and devices. Wiley

  3. Wu Heng, Nathan Conrad, Wei Luo, Ye Peide D (2014) First experimental demonstration of Ge CMOS circuits. In: 2014 IEEE international electron devices meeting, pp 9–3

  4. Dobbie A, Myronov M, Morris RJH, Hassan AHA, Prest MJ, Shah VA, Parker EHC, Whall TE, Leadley DR (2012) Ultra-high hole mobility exceeding one million in a strained germanium quantum well. Appl Phys Lett 101(17):172108

    Google Scholar 

  5. Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J-J, Katsaros G (2018) A germanium hole spin qubit. Nat Commun 9(1):1–6

    CAS  Google Scholar 

  6. Sammak A, Sabbagh D, Hendrickx NW, Lodari M, Wuetz BP, Tosato A, Yeoh LaReine et al (2019) Shallow and undoped germanium quantum wells: a playground for spin and hybrid quantum technology. Adv Funct Mater 29(14):1807613

    Google Scholar 

  7. Sikdar S, Chowdhury BN, Saha R, Chattopadhyay S (2021) Voltage-tunable quantum-dot array by patterned Ge-nanowire-based metal-oxide-semiconductor devices. Phys Rev Appl 15(5):054060

    CAS  Google Scholar 

  8. Cicco Di, Andrea AC, Frasini MM, Principi E, Itiè J-P, Munsch P (2003) High-pressure and high-temperature study of phase transitions in solid germanium. Phys status solidi (b) 240(1):19–28

    Google Scholar 

  9. Coppari F, Chervin JC, Congeduti A, Lazzeri M, Polian A, Principi E, Di Cicco A (2009) Pressure-induced phase transitions in amorphous and metastable crystalline germanium by Raman scattering, X-ray spectroscopy, and ab initio calculations. Phys Rev B 80(11):115213

    Google Scholar 

  10. Malone BD, Cohen ML (2012) Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs. Phys Rev B 86(5):054101

    Google Scholar 

  11. Huston LQ, Johnson BC, Haberl B, Wong S, Williams JS, Bradby JE (2017) Thermal stability of simple tetragonal and hexagonal diamond germanium. J Appl Phys 122(17):175108

    Google Scholar 

  12. Barth S, Seifner MS, Maldonado S (2020) Metastable group IV allotropes and solid solutions: nanoparticles and nanowires. Chem Mater 32(7):2703–2741

    CAS  Google Scholar 

  13. Kim SJ, Quy OK, Chang L-S, Stach EA, Handwerker CA, Wei A (2010) Formation of the ST12 phase in nanocrystalline Ge at ambient pressure. J Mater Chem 20(2):331–337

    Google Scholar 

  14. Zhao Z, Zhang H, Kim DY, Wentao Hu, Bullock ES, Strobel TA (2017) Properties of the exotic metastable ST12 germanium allotrope. Nat commun 8(1):1–8

    Google Scholar 

  15. Morozova NV, Korobeinikov IV, Abrosimov NV, Ovsyannikov SV (2020) Controlling the thermoelectric power of silicon–germanium alloys in different crystalline phases by applying high pressure. CrystEngComm 22(33):5416–5435

    CAS  Google Scholar 

  16. Wagner J, Núñez-Valdez M (2020) Ab initio study of band gap properties in metastable BC8/ST12 Si x Ge1− x alloys. Appl Phys Lett 117(3):032105

    CAS  Google Scholar 

  17. Raha S, Srivastava D, Biswas S, Garcia-Gil A, Karttunen AJ, Holmes JD, Singha A (2021) Probing lattice dynamics in ST 12 phase germanium nanowires by Raman spectroscopy. Appl Phys Lett 119(23):232105

    CAS  Google Scholar 

  18. Garcia-Gil A, Biswas S, Roy A, Saladukh D, Raha S, Blon T, Conroy M et al (2022) Growth and analysis of the tetragonal (ST12) germanium nanowires. Nanoscale 14(5):2030–2040

    CAS  Google Scholar 

  19. Yuan Q, Li S, Zhou Li, He D (2022) Phase-pure ST12 Ge bulks through secondary pressure induced phase transition. Solid State Commun 348:114742

    Google Scholar 

  20. Cho YJ, Im HS, Kim HS, Myung Y, Back SH, Lim YR, Jung CS et al (2013) Tetragonal phase germanium nanocrystals in lithium ion batteries. ACS Nano 7(10):9075–9084

    CAS  Google Scholar 

  21. Malone BD, Sau JD, Cohen ML (2008) Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon. Phys Rev B 78(3):035210

    Google Scholar 

  22. Cui HB, Graf D, Brooks JS, Kobayashi H (2009) Pressure-dependent metallic and superconducting phases in a germanium artificial metal. Phys Rev Lett 102(23):237001

    CAS  Google Scholar 

  23. Li D, Ma Y, Yan J (2010) Comment on pressure-dependent metallic and superconducting phases in a germanium artificial metal. Phys Rev Lett 104(13):139701

    Google Scholar 

  24. Wosylus A, Prots Y, Schnelle W, Hanfland M, Schwarz U (2008) Crystal structure refinements of Ge (tP12), physical properties and pressure-induced phase transformation Ge (tP12)↔ Ge (tI4). Zeitschrift für Naturforschung B 63(6):608–614

    CAS  Google Scholar 

  25. Joannopoulos JD, Cohen ML (1973) Electronic properties of complex crystalline and amorphous phases of Ge and Si. I. Density of states and band structures. Phys Rev B 7(6):2644

    CAS  Google Scholar 

  26. Mujica A, Needs RJ (1993) First-principles calculations of the structural properties, stability, and band structure of complex tetrahedral phases of germanium: ST12 and BC8. Phys Rev B 48(23):17010

    CAS  Google Scholar 

  27. Barkalov OI, Tissen VG, McMillan PF, Wilson M, Sella A, Nefedova MV (2010) Pressure-induced transformations and superconductivity of amorphous germanium. Phys Rev B 82(2):020507

    Google Scholar 

  28. Menoni CS, Jing Zhu Hu, Spain IL (1986) Germanium at high pressures. Phys Rev B 3(1):362

    Google Scholar 

  29. Nelmes RJ, Liu H, Belmonte SA, Loveday JS, McMahon MI, Allan DR, Häusermann D, Hanfland M (1996) Imma phase of germanium at∼80 GPa. Phys Rev B 53(6):R2907

    CAS  Google Scholar 

  30. Takemura K, Schwarz U, Syassen K, Hanfland M, Christensen NE, Novikov DL, Loa I (2000) High-pressure Cmca and hcp phases of germanium. Phys Rev B 62(16):R10603

    CAS  Google Scholar 

  31. Brazhkin VV, Lyapin AG, Popova SV, Voloshin RN (1992) Solid-phase disordering of bulk Ge and Si samples under. JETP Lett. 56(3)

  32. Nelmes RJ, McMahon MI, Wright NG, Allan DR, Loveday JS (1993) Stability and crystal structure of BC8 germanium. Phys Rev B 48(13):9883

    CAS  Google Scholar 

  33. Lyapin AG, Brazhkin VV, Popova SV, Sapelkin AV (1996) Nonequilibrium phase transformations in diamond and zincblende semiconductors under high pressure. Phys status solidi (b). 198(1):481–490

    CAS  Google Scholar 

  34. Johnson BC, Haberl B, Deshmukh S, Malone BD, Cohen ML, McCallum JC, Williams JS, Bradby JE (2013) Evidence for the r 8 phase of germanium. Phys Rev Lett 110(8):085502

    Google Scholar 

  35. Imai M, Mitamura T, Yaoita K, Tsuji K (1996) Pressure-induced phase transition of crystalline and amorphous silicon and germanium at low temperatures. High Press Res 15(3):167–189

    Google Scholar 

  36. Qadri SB, Skelton EF, Webb AW (1983) High pressure studies of Ge using synchrotron radiation. J Appl Phys 54(6):3609–3611

    CAS  Google Scholar 

  37. Xiu Y, Liu Y, Hess DW, Wong CP (2010) Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21(15):155705

    Google Scholar 

  38. https://crystbox.fzu.cz

  39. www.synopsys.com/silicon/quantumatk.html

  40. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745

    CAS  Google Scholar 

  41. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Progr 45(1):503–528

    Google Scholar 

  42. Sahni V, Bohnen K-P, Harbola MK (1988) Analysis of the local-density approximation of density-functional theory. Phys Rev A 37(6):1895

    CAS  Google Scholar 

  43. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048

    CAS  Google Scholar 

  44. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671

    CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    CAS  Google Scholar 

  46. Imajo T, Suemasu T, Toko K (2021) Strain effects on polycrystalline germanium thin films. Sci Rep 11(1):1–6

    Google Scholar 

  47. Sunthornpan N, Kimura K, Kyuno K (2022) Crystallization of Ge thin films by Au-induced layer exchange: effect of Au layer thickness on Ge crystal orientation. Jpn J Appl Phys 61(SB):SB1029

    CAS  Google Scholar 

  48. Sunthornpan N, Kimura K, Kyuno K (2022) Morphology of Ge thin films crystallized by Au-induced layer exchange at low temperature (220 °C). J Vac Sci Technol B: Nanotechnol Microelectron: Mater, Process, Meas, Phenom 40(3):030601

    CAS  Google Scholar 

  49. Cavalcoli D, Impellizzeri G, Romano L, Miritello M, Grimaldi MG, Fraboni B (2015) Optical properties of nanoporous germanium thin films. ACS Appl Mater Interfaces 7(31):16992–16998

    CAS  Google Scholar 

  50. Sorianello V, Colace L, Armani N, Rossi F, Ferrari C, Lazzarini L, Assanto G (2011) Low-temperature germanium thin films on silicon. Opt Mater Express 1(5):856–865

    CAS  Google Scholar 

  51. Khan AF, Mehmood M, Rana AM, Muhammad T (2010) Effect of annealing on structural, optical and electrical properties of nanostructured Ge thin films. Appl Surf Sci 256(7):2031–2037

    CAS  Google Scholar 

  52. Korkut C, Çınar K, Kabacelik I, Turan R, Kulakcı M, Bek A (2021) Laser crystallization of amorphous Ge thin films via a nanosecond pulsed infrared laser. Cryst Growth Des 21(8):4632–4639

    CAS  Google Scholar 

  53. Shieh J, Chen HL, Ko TS, Cheng HC, Chu TC (2004) Nanoparticle-assisted growth of porous germanium thin films. Adv Mater 16(13):1121–1124

    CAS  Google Scholar 

  54. Garcia-Gil A, Biswas S, Holmes JD (2021) A review of self-seeded germanium nanowires: synthesis, growth mechanisms and potential applications. Nanomaterials 11(8):2002

    CAS  Google Scholar 

  55. Wagner ARS, Ellis SWC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl phys lett 4(5):89–90

    CAS  Google Scholar 

  56. Dailey JW, Taraci J, Clement T, Smith DJ, Drucker J, Picraux ST (2004) Vapor–liquid–solid growth of germanium nanostructures on silicon. J Appl Phys 96(12):7556–7567

    CAS  Google Scholar 

  57. O’Regan C, Biswas S, Petkov N, Holmes JD (2014) Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control. J Mater Chem C 2(1):14–33

    CAS  Google Scholar 

  58. Das A, Chowdhury BN, Saha R, Sikdar S, Bhunia S, Chattopadhyay S (2018) Ultrathin vapor–liquid–solid grown titanium dioxide-II film on bulk GaAs substrates for advanced metal–oxide–semiconductor device applications. IEEE Trans Electr Dev 65(4):1466–1472

    CAS  Google Scholar 

  59. Das A, Chowdhury BN, Saha R, Sikdar S, Sultana J, Dalapati GK, Chattopadhyay S (2019) Formation of high-pressure phase of titanium dioxide (TiO2-II) Thin films by vapor–liquid–solid growth process on GaAs substrate. Phys status solidi (a) 216(2):1800640

    Google Scholar 

  60. Saha R, Sikdar S, Chowdhury BN, Karmakar A, Chattopadhyay S (2019) Catalyst-modified vapor–liquid–solid (VLS) growth of single crystalline β-Gallium Oxide (Ga2O3) thin film on Si-substrate. Superlatt Microstruct 136:106316

    CAS  Google Scholar 

  61. Chatterjee S, Chowdhury BN, Das A, Chattopadhyay S (2013) Estimation of step-by-step induced stress in a sequential process integration of nano-scale SOS MOSFETs with high-k gate dielectrics. Semicond sci technol 28(12):125011

    Google Scholar 

  62. Bundy FP, Kasper JS (1963) A new dense form of solid germanium. Science 139(3552):340–341

    CAS  Google Scholar 

  63. Ikoma Y, Toyota T, Ejiri Y, Saito K, Guo Q, Horita Z (2016) Allotropic phase transformation and photoluminescence of germanium nanograins processed by high-pressure torsion. J Mater Sci 51:138–143

    CAS  Google Scholar 

  64. Ikoma Y, Kumano K, Edalati K, McCartney MR, Smith DJ, Horita Z (2017) High-resolution transmission electron microscopy analysis of nanograined germanium produced by high-pressure torsion. Mater Charact 132:132–138

    CAS  Google Scholar 

  65. Young Warren C, Richard G, Budynas, Sadegh Ali M (2012) Roark's formulas for stress and strain, 8th ed, pp 166 McGraw-Hill Education

  66. DeWolf I (1996) Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond Sci Technol 11(2):139

    CAS  Google Scholar 

  67. Druzhinin A, Ostrovskii I, Khoverko Y, Liakh-Kaguy N (2019) Spin-orbit coupling in strained Ge whiskers. Low Temperat Phys 45(11):1182–1186

    CAS  Google Scholar 

  68. Rössner B, von Känel H, Chrastina D, Isella G, Batlogg B (2005) Electron–electron interaction in p-SiGe/Ge quantum wells. Mater Sci Eng B 124:184–187

    Google Scholar 

  69. Zhang X-L, Liu L-F, Liu W-M (2013) Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci Rep 3(1):1–8

    Google Scholar 

  70. Ji A-C, Xie XC, Liu WM (2007) Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys rev lett 99(18):183602

    Google Scholar 

  71. Jiang ZF, Li RD, Zhang S-C, Liu WM (2005) Semiclassical time evolution of the holes from Luttinger Hamiltonian. Phys Rev B 72(4):045201

    Google Scholar 

Download references

Acknowledgements

S. Mandal would like to acknowledge the Council of Scientific and Industrial Research (CSIR: 09/028(1103)/2019-EMR-I) for providing fellowship. The authors would like to acknowledge DST PURSE, WBDITE (West Bengal, India), Center of Excellence (COE) for Systems Biology and Biomedical Engineering, and Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, for providing infrastructural support to conduct this work.

Author information

Authors and Affiliations

Authors

Contributions

BNC contributed to conceptualization; BNC and SM helped in formal analysis; SM, NR and AB performed in investigation; BNC, SK and SC contributed to methodology; SK and SC helped in resources; AT and SK contributed to software; SC helped in supervision; SC contributed to validation; BNC and SM performed in visualization; BNC contributed writing—original draft; SC contributed to writing—review and editing.

Corresponding author

Correspondence to S. Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests regarding the manuscript.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Nag Chowdhury, B., Tiwari, A. et al. Nonequilibrium VLS-grown stable ST12-Ge thin film on Si substrate: a study on strain-induced band engineering. J Mater Sci 58, 11159–11173 (2023). https://doi.org/10.1007/s10853-023-08724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08724-9

Navigation