Skip to main content
Log in

Magnetization reversal and coercivity mechanism in truncated conical nanowires of permalloy

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetization reversal mechanism and stable remanent states of truncated conical nanowire of high aspect ratio are examined using micromagnetic simulation tool. The length of nanowire is fixed at \(1\,\upmu\)m, while its base radius R is varied from 50 to 10 nm and top radius r is varied \(R-\)10 nm to \(R-\)5 nm. The axial magnetization reversal proceeds predominantly through domain wall motion which is hindered as the tapering of the conical nanowire is increased. At remanence, a homogeneous magnetization persists throughout the nanowire except at the ends. Vortex states appear at both the ends in case of nanowires close to cylindrical shape, whereas a flower state of magnetization is exhibited at the tapered end if r is as small as \(\le 20\) nm. Control of magnetization reversal through propagation of domain wall can be observed as tapered end with flower configuration successfully restricts the movement of domain wall. Expressions for total energy density of both vortex-vortex state and vortex-flower state are constructed, and the obtained values are compared with homogeneous configuration to understand the extent of stability. The transition of remanent state is successfully obtained by energy calculations. Angular dependency of coercivity shows the existence of a critical angle above which the coercivity follows Stoner–Wohlfarth model. Below the critical angle, the coercivity mechanism is explained by Kondorsky model if R is large, whereas a modified Kondorsky model is applicable for small base radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data and code availability

The data that support the findings of this study may be availed from the corresponding author upon reasonable request.

References

  1. Shi KL, Wang Z, Jiang W (2023a) Monte carlo simulation of magnetic and thermodynamic properties of hexagonal decorated nanoparticle in a magnetic field. Journal of Materials Science pp 1–22. https://doi.org/10.1007/s10853-023-08504-5

  2. Shi KL, Quan XW, Jiang W (2023) Study on the magnetic and hysteresis behaviors in a bilayer graphene-like ring with edge decorated. Phys Scr 98(1):015,822. https://doi.org/10.1088/1402-4896/aca2f1

    Article  Google Scholar 

  3. Blasing R, Khan AA, Filippou PC et al (2020) Magnetic racetrack memory: From physics to the cusp of applications within a decade. Proc IEEE 108(8):1303–1321. https://doi.org/10.1109/JPROC.2020.2975719

    Article  Google Scholar 

  4. Allwood DA, Xiong G, Faulkner CC et al (2005) Magnetic domain-wall logic. Science 309(5741):1688–1692. https://doi.org/10.1126/science.1108813

    Article  CAS  Google Scholar 

  5. Lin WS, Lin HM, Chen HH et al (2013) (2013) Shape effects of iron nanowires on hyperthermia treatment. J Nanomater 237:439. https://doi.org/10.1155/2013/237439

    Article  CAS  Google Scholar 

  6. Sharma M, Kuanr BK (2019) Microwave devices based on template-assisted nife nanowires: fabrication and characterization. J Phys D Appl Phys 53(6):065,001. https://doi.org/10.1088/1361-6463/ab55a4

    Article  CAS  Google Scholar 

  7. Ren Y, Wang J, Liu Q et al (2011) Tailoring coercivity and magnetic anisotropy of co nanowire arrays by microstructure. J Mater Sci 46(23):7545–7550. https://doi.org/10.1007/s10853-011-5727-x

    Article  CAS  Google Scholar 

  8. Hertel R (2016) Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J Phys Condens Matter 28(48):483,002. https://doi.org/10.1088/0953-8984/28/48/483002

    Article  CAS  Google Scholar 

  9. Moreno JA, Bran C, Vazquez M et al (2021) Cylindrical magnetic nanowires applications. IEEE Trans Magn 57(4):1–17. https://doi.org/10.1109/TMAG.2021.3055338

    Article  Google Scholar 

  10. Ramirez-Villegas R, Huynen I, Piraux L et al (2016) Configurable microwave filter for signal processing based on arrays of bistable magnetic nanowires. IEEE Trans Microw Theory Tech 65(1):72–77. https://doi.org/10.1109/TMTT.2016.2614926

    Article  Google Scholar 

  11. Forster H, Schrefl T, Scholz W et al (2002) Micromagnetic simulation of domain wall motion in magnetic nano-wires. J Magn Magn Mater 249(1–2):181–186. https://doi.org/10.1016/S0304-8853(02)00528-0

    Article  CAS  Google Scholar 

  12. Yang H, Li Y, Zeng M et al (2016) Static and dynamic magnetization of gradient feni alloy nanowire. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep20427

    Article  CAS  Google Scholar 

  13. Garcia J, Fernandez-Roldan JA, Gonzalez R et al (2021) Narrow segment driven multistep magnetization reversal process in sharp diameter modulated fe67co33 nanowires. Nanomaterials 11(11):3077. https://doi.org/10.3390/nano11113077

    Article  CAS  Google Scholar 

  14. Berganza E, Jaafar M, Bran C et al (2017) Multisegmented nanowires: a step towards the control of the domain wall configuration. Sci Rep 7(1):11,576. https://doi.org/10.1038/s41598-017-11902-w

    Article  CAS  Google Scholar 

  15. Salem MS, Tejo F, Zierold R et al (2018) Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. Nanotechnology 29(6):065,602. https://doi.org/10.1088/1361-6528/aaa095

    Article  CAS  Google Scholar 

  16. Saez G, Diaz P, Cisternas E et al (2021) Information storage in permalloy modulated magnetic nanowires. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-00165-1

    Article  CAS  Google Scholar 

  17. Arzuza L, Lopez-Ruiz R, Salazar-Aravena D et al (2017) Domain wall propagation tuning in magnetic nanowires through geometric modulation. J Magn Magn Mater 432:309–317. https://doi.org/10.1016/j.jmmm.2017.01.071

    Article  CAS  Google Scholar 

  18. Rodriguez LA, Bran C, Reyes D et al (2016) Quantitative nanoscale magnetic study of isolated diameter-modulated fecocu nanowires. ACS Nano 10(10):9669–9678. https://doi.org/10.1021/acsnano.6b05496

    Article  CAS  Google Scholar 

  19. Fernandez-Roldan JA, Perez del Real R, Bran C et al (2018) Magnetization pinning in modulated nanowires: from topological protection to the “corkscrew’’ mechanism. Nanoscale 10(13):5923–5927. https://doi.org/10.1039/C8NR00024G

    Article  CAS  Google Scholar 

  20. Saez G, Cisternas E, Diaz P et al (2020) Tuning the coercive field by controlling the magnetization reversal process in permalloy modulated nanowires. J Magn Magn Mater 512(167):045. https://doi.org/10.1016/j.jmmm.2020.167045

    Article  CAS  Google Scholar 

  21. Saavedra E, Saez G, Diaz P et al (2019) Dynamic susceptibility of modulated magnetic nanowires. AIP Adv 9(6):065,007. https://doi.org/10.1063/1.5091813

    Article  CAS  Google Scholar 

  22. Burn DM, Arac E, Atkinson D (2013) Magnetization switching and domain-wall propagation behavior in edge-modulated ferromagnetic nanowire structures. Phys Rev B 88(10):104,422. https://doi.org/10.1103/PhysRevB.88.104422

    Article  CAS  Google Scholar 

  23. Fernandez-Roldan JA, De Riz A, Trapp B et al (2019) Modeling magnetic-field-induced domain wall propagation in modulated-diameter cylindrical nanowires. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-40794-1

    Article  CAS  Google Scholar 

  24. Liu D, Zhao T, Zhang M et al (2021) Exploration of nontrivial topological domain structures in the equilibrium state of magnetic nanodisks. J Mater Sci 56:4677–4685. https://doi.org/10.1007/s10853-020-05569-4

    Article  CAS  Google Scholar 

  25. Schoberl J (1997) Netgen an advancing front 2d/3d-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52. https://doi.org/10.1007/s007910050004

    Article  Google Scholar 

  26. Venkat G, Venkateswarlu D, Joshi R et al (2018) Enhanced spin wave propagation in magnonic rings by bias field modulation. AIP Adv 8(5):056,006. https://doi.org/10.1063/1.5006576

    Article  Google Scholar 

  27. Fischbacher T, Franchin M, Bordignon G et al (2007) A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans Magn 43(6):2896–2898. https://doi.org/10.1109/TMAG.2007.893843

    Article  Google Scholar 

  28. Ramachandran P, Varoquaux G (2011) Mayavi: 3d visualization of scientific data. Comput Sci Eng 13(2):40–51. https://doi.org/10.1109/MCSE.2011.35

    Article  Google Scholar 

  29. Ivanov YP, Vazquez M, Chubykalo-Fesenko O (2013) Magnetic reversal modes in cylindrical nanowires. J Phys D Appl Phys 46(48):485,001. https://doi.org/10.1088/0022-3727/46/48/485001

    Article  CAS  Google Scholar 

  30. Yan M, Wang H, Campbell CE (2008) Unconventional magnetic vortex structures observed in micromagnetic simulations. J Magn Magn Mater 320(13):1937–1944. https://doi.org/10.1016/j.jmmm.2008.02.170

    Article  CAS  Google Scholar 

  31. Dao N, Donahue M, Dumitru I et al (2004) Dynamic susceptibility of nanopillars. Nanotechnology 15(10):S634. https://doi.org/10.1088/0957-4484/15/10/022

    Article  Google Scholar 

  32. Ross C, Farhoud M, Hwang M et al (2001) Micromagnetic behavior of conical ferromagnetic particles. J Appl Phys 89(2):1310–1319. https://doi.org/10.1063/1.1331656

    Article  CAS  Google Scholar 

  33. Bran C, Fernandez-Roldan JA, Del Real RP et al (2021) Magnetic configurations in modulated cylindrical nanowires. Nanomaterials 11(3):600. https://doi.org/10.3390/nano11030600

    Article  CAS  Google Scholar 

  34. Feldtkeller E, Thomas H (1965) Struktur und energie von blochlinien in dünnen ferromagnetischen schichten. Physik der kondensierten Materie 4(1):8–14. https://doi.org/10.1007/BF02423256

    Article  CAS  Google Scholar 

  35. Sahu R, Mishra AC (2022) Magnetization reversal and ground states in thin truncated conical nanodisks: analytical and micromagnetic modelling approach. J Magn Magn Mater 556(169):356. https://doi.org/10.1016/j.jmmm.2022.169356

    Article  CAS  Google Scholar 

  36. Raviolo S, Tejo F, Bajales N et al (2018) Angular dependence of the magnetic properties of permalloy and nickel nanowires as a function of their diameters. Mater Res Exp 5(1):015,043. https://doi.org/10.1088/2053-1591/aaa537

    Article  CAS  Google Scholar 

  37. Tejo F, Vidal-Silva N, Espejo A et al (2014) Angular dependence of the magnetic properties of cylindrical diameter modulated ni80fe20 nanowires. J Appl Phys 115(17):17D136. https://doi.org/10.1063/1.4865777

    Article  CAS  Google Scholar 

  38. Elk K, Jahn L (1991) Angular dependence and competition of coercivity mechanisms. J Magn Magn Mater 102(1–2):159–165. https://doi.org/10.1016/0304-8853(91)90282-F

    Article  CAS  Google Scholar 

  39. Harres A, Mallmann TA, Gamino M et al (2022) Magnetization reversal processes in amorphous cofeb thin films. J Magn Magn Mater 552(169):135. https://doi.org/10.1016/j.jmmm.2022.169135

    Article  CAS  Google Scholar 

  40. Bernasconi J, Strassler S, Perkins RS (1975) Simple models for the coercivity of hard magnetic materials. AIP Conf Proc 24(1):761–762. https://doi.org/10.1063/1.30278

    Article  Google Scholar 

  41. Ratnam D, Buessem W (1972) Angular variation of coercive force in barium ferrite. J Appl Phys 43(3):1291–1293. https://doi.org/10.1063/1.1661260

    Article  CAS  Google Scholar 

  42. Tu H, You B, Gao Y et al (2016) The thickness-dependent in-plane uniaxial magnetic anisotropy in amorphous cofeb films on gaas (001) substrates. J Supercond Novel Magn 29:2843–2848. https://doi.org/10.1007/s10948-016-3615-y

    Article  CAS  Google Scholar 

  43. Schumacher F (1991) On the modification of the kondorsky function. J Appl Phys 70(6):3184–3187. https://doi.org/10.1063/1.349301

    Article  Google Scholar 

  44. Delalande M, de Vries J, Abelmann L et al (2012) Measurement of the nucleation and domain depinning field in a single co/pt multilayer dot by anomalous hall effect. J Magn Magn Mater 324(7):1277–1280. https://doi.org/10.1016/j.jmmm.2011.09.037

    Article  CAS  Google Scholar 

  45. Huang HL, Sobolev VL (1993) Domain wall structure and the re-modified Kondorsky function. IEEE Trans Magn 29(6):2539–2541. https://doi.org/10.1109/20.280961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Akhila Priya Kotti and Rahul Sahu would like to thank Ministry of Human Resource Development (MHRD), New Delhi, for providing financial assistance for carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

A.P. Kotti helped in conception and design of study, data curation, investigation and writing—first draft. R. Sahu was involved in conception and design of study, data curation and visualization. A.C. Mishra contributed to conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Amaresh Chandra Mishra.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests or personal ties that could have influenced the research presented in this study.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Total energy density for vortex-vortex state

In order to include the effect of top and bottom surface, the continuum function is divided into two parts for each half of the wire.

$$\begin{aligned} \cos \theta (\rho ,z) = \left\{ \begin{array}{ c l } N_{0}e^{-2\rho ^n[\beta _{0}(1-\frac{2z}{h})^\eta ]^n}+(1-N_{0}) &{} \quad 0\le z\le \frac{h}{2} \\ N_{h}e^{-2\rho ^n[\beta _{h}(\frac{2z}{h}-1)^\lambda ]^n}+(1-N_{h}) &{} \quad \frac{h}{2} \le z\le h \end{array} \right. \end{aligned}$$

Here \(\eta\) and \(\lambda\) are parameters useful to control the effective length of the vortex on bottom and top surface, respectively.

Now the exchange energy can be calculated by using

$$\begin{aligned} E_{\mathrm{ex}}=A\int _V \left[ \left( \vec {\nabla } m_{x}\right) ^2+\left( \vec {\nabla } m_{y}\right) ^2+\left( \vec {\nabla } m_{z}\right) ^2\right] dV \end{aligned}$$
(A1)

On the curved surface, the variation of z is given as \(z=\left( \frac{R-\rho }{R-r}\right) h\) (See Fig. 18). Now we use Eq. 3 and solve to give

$$\begin{aligned} E_{\mathrm{ex}}= & {} A\int _{0}^{R-\left( \frac{R-r}{h}\right) z} \rho \text {d}\rho \int _{0}^{2\pi } \text {d}\varphi \nonumber \\{} & {} \int _{0}^{h} \text {d}z \left[ \left( \frac{\partial \theta }{\partial \rho }\right) ^2+\frac{\sin ^2\theta }{\rho ^2}+\left( \frac{\partial \theta }{\partial z}\right) ^2\right] \end{aligned}$$
(A2)

For bottom half \(0\le z\le \frac{h}{2}\)

$$\begin{aligned} \left( \frac{\partial \theta }{\partial \rho }\right)= & {} \frac{2 n \rho ^{n-1}\beta _{0}^n (1-\frac{2z}{h})^{n\eta } N_{0}e^{-2\rho ^n\beta _{0}^n(1-\frac{2z}{h})^{n\eta }}}{\sqrt{1-\left[ N_{0}e^{-2\rho ^n[\beta _{0}(1-\frac{2z}{h})^\eta ]^n}+(1-N_{0})\right] ^2}} \end{aligned}$$
(A3)
$$\begin{aligned} \left( \frac{\partial \theta }{\partial z}\right)= & {} \frac{-\frac{4}{h} n \eta \rho ^n\beta _{0}^n \left( 1-\frac{2z}{h}\right) ^{n\eta -1} N_{0}e^{-2\rho ^n\beta _{0}^n\left( 1-\frac{2z}{h}\right) ^{n\eta }}}{\sqrt{1-\left[ N_{0}e^{-2\rho ^n\left[ \beta _{0}\left( 1-\frac{2z}{h}\right) ^\eta \right] ^n}+\left( 1-N_{0}\right) \right] ^2}} \end{aligned}$$
(A4)

For top half \(\frac{h}{2} \le z\le h\)

$$\begin{aligned} \left( \frac{\partial \theta }{\partial \rho }\right)= & {} \frac{2 n \rho ^{n-1} \beta _{h}^n \left( \frac{2z}{h}-1\right) ^{n \lambda } N_{h}e^{-2\rho ^n\beta _{h}^n\left( \frac{2z}{h}-1\right) ^{n\lambda }}}{\sqrt{1-\left[ N_{h}e^{-2\rho ^n\left[ \beta _{h}\left( \frac{2z}{h}-1\right) ^\lambda \right] ^n}+(1-N_{h})\right] ^2}} \end{aligned}$$
(A5)
$$\begin{aligned} \left( \frac{\partial \theta }{\partial z}\right)= & {} \frac{\frac{4}{h} n \lambda \rho ^{n} \beta _{h}^n \left( \frac{2z}{h}-1\right) ^{n \lambda -1} N_{h}e^{-2\rho ^n\beta _{h}^n\left( \frac{2z}{h}-1\right) ^{n\lambda }}}{\sqrt{1-\left[ N_{h}e^{-2\rho ^n\left[ \beta _{h}\left( \frac{2z}{h}-1\right) ^\lambda \right] ^n}+\left( 1-N_{h}\right) \right] ^2}} \end{aligned}$$
(A6)

By substituting in Eq. A2

$$\begin{aligned} E_{\mathrm{ex}}= & {} 2\pi A\int _{0}^{\rho _{\mathrm{lim}}} \rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z \nonumber \\{} & {} \Bigg [\left( \frac{2n\rho ^{n-1}\beta _{0}^n \left( c_{1}\right) ^{n\eta }f_{1}}{\sqrt{1-f_{2}^2}}\right) ^2+\frac{1}{\rho ^2}\left( 1-f_{2}^2\right) \nonumber \\{} & {} +\left( \frac{-\frac{4}{h}n \eta \rho ^{n}\beta _{0}^n \left( c_{1}\right) ^{n\eta -1}f_{1}}{\sqrt{1-f_{2}^2}}\right) ^2\Bigg ] \nonumber \\{} & {} + 2\pi A\int _{0}^{\rho _{\mathrm{lim}}} \rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z \nonumber \\{} & {} \Bigg [\left( \frac{2n\rho ^{n-1}\beta _{h}^n \left( c_{2}\right) ^{n\lambda }f_{3}}{\sqrt{1-f_{4}^2}}\right) ^2+\frac{1}{\rho ^2}\left( 1-f_{4}^2\right) \nonumber \\{} & {} +\left( \frac{\frac{4}{h}n \lambda \rho ^{n}\beta _{h}^n \left( c_{2}\right) ^{n\lambda -1}f_{3}}{\sqrt{1-f_{4}^2}}\right) ^2\Bigg ] \end{aligned}$$
(A7)

where \(\rho _{\mathrm{lim}}=R-\left( \frac{R-r}{h}\right) z\), \(c_{1}=1-\frac{2z}{h}\), \(c_{2}=\frac{2z}{h}-1\), \(f_{1}=N_{0}e^{-2\rho ^n\beta _{0}^n\left( c_1\right) ^{\eta n}}\), \(f_{2}=N_{0}e^{-2\rho ^n\beta _{0}^n\left( c_1\right) ^{\eta n}}+\left( 1-N_{0}\right)\), \(f_{3}= N_{h}e^{-2\rho ^n \beta _{h}^n\left( c_{2}\right) ^{\lambda n}}\) and \(f_{4}= N_{h}e^{-2\rho ^n\beta _{h}^n\left( c_{2}\right) ^{\lambda n}}+\left( 1-N_{h}\right)\)

Figure 18
figure 18

Geometry of conical nanowire. Top radius r and bottom radius R in the xy plane and height h along the z-direction

Volume of the truncated conical nanodisk is calculated using

$$\begin{aligned} V=\pi r^2 h + \int _{r}^{R} \rho \text {d}\rho \int _{0}^{2\pi } \text {d}\varphi \int _{0}^{\left( \frac{R-\rho }{R-r}\right) h} \text {d}z \end{aligned}$$

which is found to be

$$\begin{aligned} V=\pi r^2 h + \frac{2\pi h}{R-r} \left( \frac{R^3}{6}+r^2 \left( \frac{r}{3}-\frac{R}{2}\right) \right) \end{aligned}$$
(A8)

The dipolar interaction energy is given as

$$\begin{aligned} E_\mathrm{dip}=\frac{\mu _{0}}{2}\int \vec {M}(r)\cdot \vec {\nabla }U(r)\text {d}\nu \end{aligned}$$
(A9)

where the magnetic potential is

$$\begin{aligned} U(r)= & {} -\frac{1}{4\pi }\int _V \frac{\vec {\nabla }\cdot \vec {M}(r^\prime )}{|r-r^\prime |}dV^\prime \nonumber \\{} & {} +\frac{1}{4\pi }\int _S \frac{\hat{n^\prime }\cdot \vec {M}(r^\prime )}{|r-r^\prime |}ds^\prime \end{aligned}$$
(A10)

To calculate the volume magnetic potential, we first solve divergence of \(\vec {M}\)

for \(0\le z\le \frac{h}{2}\)

$$\begin{aligned} \vec {\nabla }\cdot \vec {M}=\frac{4 M_{0}}{h} \rho ^{\prime ^n} \beta _{0}^n n \eta \left( c_3\right) ^{n\eta -1} f_5 \end{aligned}$$

for \(\frac{h}{2}\le z\le h\)

$$\begin{aligned} \vec {\nabla }\cdot \vec {M}=-\frac{4 M_{0}}{h} \rho ^{\prime ^n} \beta _{h}^n n \lambda \left( c_4\right) ^{n\lambda -1} f_6 \end{aligned}$$

where \(c_3=1-\frac{2z^\prime }{h}\), \(c_4=\frac{2z^\prime }{h}-1\) and \(f_5= N_{0} e^{-2\rho ^{\prime ^n}\beta _{0}^n \left( c_3\right) ^{\eta n}}\), \(f_6= N_{h} e^{-2\rho ^{\prime ^n}\beta _{h}^n\left( c_4\right) ^{\lambda n}}\)

Substitute in the first half of Eq. A10

$$\begin{aligned} U_{\nu }(r)=-\frac{1}{4\pi } \int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime \int _{0}^{2\pi } \text {d}\varphi ^\prime \int _{0}^{h} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) \frac{1}{|r-r^\prime |} \end{aligned}$$

The radial part can be expressed as

$$\begin{aligned} \frac{1}{|r-r^\prime |}=\sum _{p=-\infty }^{\infty }e^{ip(\varphi - \varphi \prime )}\int _{0}^{\infty }J_{p}(k\rho )J_{p}(k\rho ^\prime )e^{k(z_<-z_>)}\text {d}k \end{aligned}$$
(A11)

where \(J_{p}\) are the first kind Bessel functions and using

$$\begin{aligned} \int _{0}^{2\pi }e^{-ip\varphi \prime } \text {d}\varphi ^\prime =2\pi \delta _{p,0} \end{aligned}$$
(A12)

After solving the radial part using above expression, we have

$$\begin{aligned} U_{\nu }(r)= & {} -\frac{1}{2} \int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime \int _{0}^{h} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z_<-z_>)}\text {d}k \end{aligned}$$

Substituting the divergence of \(\vec {M}\) expressions appropriately

$$\begin{aligned} U_{\nu }(r)= & {} -\frac{M_0}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \int _{0}^{\frac{h}{2}} \text {d}z^\prime \frac{4}{h} \rho ^{\prime ^n} \beta _{0}^n n \eta \left( c_3\right) ^{n\eta -1} f_5\\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime ) \\{} & {} \times e^{k(z_<-z_>)}\text {d}k + \frac{M_0}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{\frac{h}{2}}^{h} \text {d}z^\prime \frac{4}{h} \rho ^{\prime ^n} \beta _{h}^n n \lambda \left( c_4\right) ^{n\lambda -1} f_6 \\{} & {} \times \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z_<-z_>)}\text {d}k \end{aligned}$$

Here, we have \(\rho ^\prime _{\mathrm{lim}}= R-\left( \frac{R-r}{h}\right) z^\prime\)

\(\vec {M}(r)\) has both \(\varphi\) and z components. Thus, we need only these components of \(\vec {\nabla }U_{\nu }(r)\). But \(\vec {\nabla }U_{\nu }(r)_\varphi =0\). So we solve only the z-component to calculate the required dipolar energy.

$$\begin{aligned} \vec {\nabla }U_{\nu }(r)_z= & {} -\frac{M_0}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\frac{h}{2}} \text {d}z^\prime \frac{4}{h} \rho ^{\prime ^n} \beta _{0}^n n \eta \left( c_3\right) ^{n\eta -1} f_5 J_{00}\\{} & {} + \frac{M_0}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{\frac{h}{2}}^{h} \text {d}z^\prime \frac{4}{h} \rho ^{\prime ^n} \beta _{h}^n n \lambda \left( c_4\right) ^{n\lambda -1} f_6 J_{00} \end{aligned}$$

where \(J_{00}=\int _{0}^{\infty } ksgn(z-z^\prime ) J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z_<-z_>)}\text {d}k\)

Now, the dipolar energy is calculated by substituting the interacting potential

$$\begin{aligned} E_\mathrm{dip}^v= & {} \mu _{0}M_0 \pi \left[ \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z f_2 \right. \nonumber \\{} & {} \left. + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z f_4 \right] \vec {\nabla }U_\nu (r)_z \end{aligned}$$
(A13)

By further simplification

$$\begin{aligned} E_\mathrm{dip}^v= & {} \frac{2n \pi \mu _0 M_0^2 }{h} \Bigg [ -\int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z f_2\\{} & {} \int _{0}^{\rho ^\prime _{\mathrm{lim}}}\rho ^{\prime ^{n+1}} \text {d}\rho ^\prime \int _{0}^{\frac{h}{2}} \text {d}z^\prime \beta _{0}^n \eta (c_3)^{n\eta -1} f_5 J_{00} \\{} & {} -\int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z f_4 \\{} & {} \int _{0}^{\rho ^\prime _{\mathrm{lim}}}\rho ^{\prime ^{n+1}} \text {d}\rho ^\prime \int _{0}^{\frac{h}{2}} \text {d}z^\prime \beta _{0}^n \eta (c_3)^{n\eta -1} f_5 J_{00} \\{} & {} + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z f_2 \\{} & {} \int _{0}^{\rho ^\prime _{\mathrm{lim}}}\rho ^{\prime ^{n+1}} \text {d}\rho ^\prime \int _{\frac{h}{2}}^{h} \text {d}z^\prime \beta _{h}^n \lambda (c_4)^{n\lambda -1} f_6 J_{00} \\{} & {} +\int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z f_4 \int _{0}^{\rho ^\prime _{\mathrm{lim}}}\rho ^{\prime ^{n+1}} \text {d}\rho ^\prime \\{} & {} \int _{\frac{h}{2}}^{h} \text {d}z^\prime \beta _{h}^n \lambda (c_4)^{n\lambda -1} f_6 J_{00} \Bigg ] \end{aligned}$$

The equation of curved surface is of the form

$$\begin{aligned} \phi =z-\left( \frac{R-\rho }{R-r}\right) h=0 \end{aligned}$$

Here, the unit vector is

$$\begin{aligned} \hat{n}=\frac{h}{\sqrt{h^2+(R-r)^2}}\hat{\rho }+\frac{R-r}{\sqrt{h^2+(R-r)^2}}\hat{z} \end{aligned}$$
(A14)

Dot product with magnetization yields

$$\begin{aligned} \hat{n^\prime }.\vec {M}(r^\prime )=M_0 \frac{R-r}{\sqrt{h^2+(R-r)^2}} \cos \theta (\rho ^\prime ,z^\prime ) \end{aligned}$$

On the top surface

$$\begin{aligned} \hat{n^\prime }.\vec {M}(r^\prime )= M_{0} \left[ N_{h}e^{-2\rho ^{\prime ^n}\beta _{h}^n}+\left( 1-N_{h}\right) \right] \end{aligned}$$

On the bottom surface

$$\begin{aligned} \hat{n^\prime }.\vec {M}(r^\prime )=- M_{0}\left[ N_{0} e^{-2\rho ^{\prime ^n}\beta _{0}^n}+\left( 1-N_{0}\right) \right] \end{aligned}$$

Along the curved surface, we have \(ds^\prime =\rho ^\prime \text {d}\rho ^\prime \text {d}\varphi ^\prime \sec \gamma ,\) where \(\sec \gamma = \frac{\sqrt{h^2+(R-r)^2}}{R-r}\)

The surface interacting potential due to the top, bottom and curved surface is

$$\begin{aligned} U_s(r)= & {} \frac{M_0}{2}\int _{0}^{r} \rho ^\prime \text {d}\rho ^\prime f_8 \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z-h)}\text {d}k \\{} & {} -\frac{M_0}{2}\int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime f_7 \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k \\{} & {} + \frac{M_0}{2}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime f_{10} \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-\left( \frac{R-\rho ^\prime }{R-r}\right) h|}\text {d}k \\{} & {} + \frac{M_0}{2}\int _{\frac{R+r}{2}}^{R} \rho ^\prime \text {d}\rho ^\prime f_9 \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-\left( \frac{R-\rho ^\prime }{R-r}\right) h|}\text {d}k \end{aligned}$$

where \(f_7 =N_{0}e^{-2\rho ^{\prime ^n}\beta _{0}^n}+\left( 1-N_{0}\right)\), \(f_8 = N_{h}e^{-2\rho ^{\prime ^n}\beta _{h}^n}+\left( 1-N_{h}\right)\), \(f_9= N_{0} e^{-2\rho ^{\prime ^n}\beta _{0}^n \left( c_3\right) ^{\eta n}}+\left( 1-N_{0}\right)\), \(f_{10}= N_{h} e^{-2\rho ^{\prime ^n}\beta _{h}^n\left( c_4\right) ^{\lambda n}}+\left( 1-N_{h}\right)\) and \(z^\prime =\left( \frac{R-\rho ^\prime }{R-r}\right) h\)

Again, only the z-component is required

$$\begin{aligned} \vec {\nabla }U_s(r)_z= & {} \frac{M_0}{2}\int _{0}^{r} \rho ^\prime \text {d}\rho ^\prime f_8\\{} & {} \int _{0}^{\infty }k J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z-h)}\text {d}k\\{} & {} +\frac{M_0}{2}\int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime f_7\\{} & {} \int _{0}^{\infty }k J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k \\{} & {} + \frac{M_0}{2}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime f_{10} J_{00} \\{} & {} + \frac{M_0}{2}\int _{\frac{R+r}{2}}^{R} \rho ^\prime \text {d}\rho ^\prime f_9 J_{00} \end{aligned}$$

The dipolar surface energy is calculated as

$$\begin{aligned} E_\mathrm{dip}^s= & {} \mu _{0}M_0 \pi \left[ \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z f_2 \right. \nonumber \\{} & {} \left. + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z f_4 \right] \vec {\nabla }U_s(r)_z \end{aligned}$$
(A15)

Appendix B Total energy density for vortex-flower state

Calculation of dipolar energy requires the divergence of \(\vec {M}\)

for \(0\le z\le \frac{h}{2}\)

$$\begin{aligned} \vec {\nabla }\cdot \vec {M}= & {} \frac{M_0}{\rho ^\prime }\left[ \frac{\partial }{\partial \varphi ^\prime }\left( \sin \theta \left( \rho ^\prime ,z^\prime \right) \right) +\frac{\partial }{\partial z^\prime }\left( \rho ^\prime \cos \theta \left( \rho ^\prime ,z^\prime \right) \right) \right] \nonumber \\ \vec {\nabla }\cdot \vec {M}_{_{0\le z\le \frac{h}{2}}}= & {} \frac{4 M_{0}}{h} \rho ^{\prime ^n} \beta _{0}^n n \eta \left( c_3\right) ^{n\eta -1} f_5 \end{aligned}$$
(B16)

which is similar to vortex-vortex state, as the vortex is still stabilized on the bottom half.

for \(\frac{h}{2} \le z\le h\)

$$\begin{aligned} \vec {\nabla }\cdot \vec {M}= & {} \frac{M_0}{\rho ^\prime }\left[ \frac{\partial }{\partial \rho ^\prime }\left( \rho ^\prime \sin \theta \left( \rho ^\prime ,z^\prime \right) \right) +\frac{\partial }{\partial z^\prime }\left( \rho ^\prime \cos \theta \left( \rho ^\prime ,z^\prime \right) \right) \right] \nonumber \\ \vec {\nabla }\cdot \vec {M}_{\frac{h}{2} \le z\le h}= & {} M_0 \left[ \frac{\sin \theta \left( \rho ^\prime ,z^\prime \right) }{\rho ^\prime }+T_1+T_2\right] \end{aligned}$$
(B17)

Here \(T_1\) and \(T_2\) are solved as

$$\begin{aligned} T_1= & {} \frac{\partial }{\partial \rho ^\prime }\left( \sin \theta \left( \rho ^\prime ,z^\prime \right) \right) \\= & {} 2n \lambda \rho ^{\prime ^{n-1}} \beta _{h}^n \cot \theta \left( \rho ^\prime ,z^\prime \right) \left( c_4\right) ^{n\lambda } f_6\\ T_2= & {} \frac{\partial }{\partial z^\prime }\left( \rho ^\prime \cos \theta \left( \rho ^\prime ,z^\prime \right) \right) \\= & {} -\frac{4}{h} n \lambda \rho ^{\prime ^n} \beta _{h}^n \left( c_4\right) ^{n\lambda -1} f_6 \end{aligned}$$

Magnetic potential is given as

$$\begin{aligned} U_{\nu }(r)= & {} -\frac{1}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \int _{0}^{\frac{h}{2}} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) _{0 \le z\le \frac{h}{2}} \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime ) e^{k(z_<-z_>)}\text {d}k\\{} & {} -\frac{1}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \int _{\frac{h}{2}}^{h} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) _{\frac{h}{2} \le z\le h} \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z_<-z_>)}\text {d}k \end{aligned}$$

For the bottom half, we require only the z-component of \(\vec {\nabla }U_{\nu }(r)\), as it exhibits vortex configuration. But for the top half, due to flower domain configuration \(\vec {M}(r^\prime )\) has both \(\rho\) and z component. So we need both of these components for \(\vec {\nabla }U_{\nu }(r)\).

$$\begin{aligned} \vec {\nabla }U_{\nu }(r)_z= & {} -\frac{1}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \nonumber \\{} & {} \int _{0}^{\frac{h}{2}} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) _{0 \le z\le \frac{h}{2}} J_{00} -\frac{1}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \nonumber \\{} & {} \times \int _{\frac{h}{2}}^{h} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) _{\frac{h}{2} \le z\le h} J_{00} \end{aligned}$$
(B18)
$$\begin{aligned} \vec {\nabla }U_{\nu }(r)_\rho= & {} \frac{1}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \nonumber \\{} & {} \int _{0}^{\frac{h}{2}} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) _{0 \le z\le \frac{h}{2}} J_{10}+\frac{1}{2} \int _{0}^{\rho ^\prime _{\mathrm{lim}}} \rho ^\prime \text {d}\rho ^\prime \nonumber \\{} & {} \times \int _{\frac{h}{2}}^{h} \text {d}z^\prime \left( \vec {\nabla }\cdot \vec {M}\right) _{\frac{h}{2} \le z\le h} J_{10} \end{aligned}$$
(B19)

Here \(J_{10} =\int _{0}^{\infty }k J_{1}(k\rho )J_{0}(k\rho ^\prime )e^{k(z_<-z_>)}\text {d}k\)

Using Eq. B18 and Eq. B19, we have

$$\begin{aligned} E_\mathrm{dip}^\nu= & {} \mu _{0}M_0 \pi \Bigg [ \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z f_2 \vec {\nabla }U_\nu (r)_z \nonumber \\{} & {} + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z f_4 \vec {\nabla }U_\nu (r)_z \nonumber \\{} & {} + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z \sqrt{1-f_4^2} \vec {\nabla }U_\nu (r)_\rho \Bigg ] \end{aligned}$$
(B20)

Now the dipolar contribution of bottom surface is calculated in a similar fashion to vortex-vortex state, but for the top half, i.e.

for \(\frac{h}{2} \le z\le h\)

$$\begin{aligned} \hat{n^\prime }.\vec {M}(r^\prime )= & {} M_0 \frac{h}{\sqrt{h^2+(R-r)^2}} \sin \theta \\{} & {} +M_0 \frac{R-r}{\sqrt{h^2+(R-r)^2}} \cos \theta \end{aligned}$$

The potential with contributions from top, bottom and curved surface is followed as

$$\begin{aligned} U_s(r)= & {} \frac{1}{4\pi }\int _S {\frac{M_0 \cos \theta }{|r-r^\prime |}ds^\prime }_{z^\prime =h}\nonumber \\{} & {} -\frac{1}{4\pi }\int _S {\frac{M_0 \cos \theta }{|r-r^\prime |}ds^\prime }_{z^\prime =0} \nonumber \\{} & {} + \frac{1}{4\pi } \frac{R-r}{\sqrt{h^2+(R-r)^2}} \int _S {\frac{M_0 \cos \theta }{|r-r^\prime |}ds^\prime }_{z^\prime < \frac{h}{2}}\nonumber \\{} & {} + \frac{1}{4\pi } \frac{1}{\sqrt{h^2+(R-r)^2}} \nonumber \\{} & {} \times \int _S {\frac{M_0 \left( h\sin \theta +\left( R-r\right) \cos \theta \right) }{|r-r^\prime |}ds^\prime }_{z^\prime > \frac{h}{2}} \end{aligned}$$
(B21)

Using the simplification procedure for radial component yields

$$\begin{aligned} U_s(r)= & {} \frac{M_0}{2}\int _{0}^{r} \rho ^\prime \text {d}\rho ^\prime f_8 \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z-h)}\text {d}k\\{} & {} -\frac{M_0}{2}\int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime f_7 \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k \\{} & {} + \frac{M_0}{2} \frac{h}{R-r}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime \sqrt{1-f_{10}^2}\\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-\left( \frac{R-\rho ^\prime }{R-r}\right) h|}\text {d}k \\{} & {} + \frac{M_0}{2}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime f_{10} \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-\left( \frac{R-\rho ^\prime }{R-r}\right) h|}\text {d}k \\{} & {} + \frac{M_0}{2}\int _{\frac{R+r}{2}}^{R} \rho ^\prime \text {d}\rho ^\prime f_9 \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-\left( \frac{R-\rho ^\prime }{R-r}\right) h|}\text {d}k \end{aligned}$$

Again we require both z and \(\rho\) components of \(\vec {\nabla }U_s(r)\)

$$\begin{aligned} \vec {\nabla }U_s(r)_z= & {} \frac{M_0}{2}\int _{0}^{r} \rho ^\prime \text {d}\rho ^\prime f_8 \\{} & {} \int _{0}^{\infty }k J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{k(z-h)}\text {d}k\\{} & {} +\frac{M_0}{2}\int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime \\{} & {} \times f_7 \int _{0}^{\infty }k J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k \\{} & {} + \frac{M_0}{2}\frac{h}{R-r}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime \sqrt{1-f_{10}^2} I_{00} \\{} & {} + \frac{M_0}{2}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime f_{10} I_{00}\\{} & {} + \frac{M_0}{2}\int _{\frac{R+r}{2}}^{R} \rho ^\prime \text {d}\rho ^\prime f_9 I_{00} \end{aligned}$$

where \(I_{00} = \int _{0}^{\infty }k sgn\left( z-\left( \frac{R-\rho ^\prime }{R-r}\right) h\right) J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-\left( \frac{R-\rho ^\prime }{R-r}\right) h|}\text {d}k\)

$$\begin{aligned} \vec {\nabla }U_s(r)_\rho= & {} -\frac{M_0}{2}\int _{0}^{r} \rho ^\prime \text {d}\rho ^\prime f_8 \int _{0}^{\infty }k J_{1}(k\rho )J_{0}(k\rho ^\prime )e^{k(z-h)}\text {d}k\\{} & {} +\frac{M_0}{2}\int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime \\{} & {} \times f_7 \int _{0}^{\infty }k J_{1}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k \\{} & {} - \frac{M_0}{2}\frac{h}{R-r}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime \sqrt{1-f_{10}^2}J_{10}\\{} & {} - \frac{M_0}{2}\int _{r}^{\frac{R+r}{2}} \rho ^\prime \text {d}\rho ^\prime f_{10} J_{10} \\{} & {} - \frac{M_0}{2}\int _{\frac{R+r}{2}}^{R} \rho ^\prime \text {d}\rho ^\prime f_9 J_{10} \end{aligned}$$

Substitution of above equations gives the expression for surface dipolar energy as

$$\begin{aligned} E_\mathrm{dip}^s= & {} \mu _{0}M_0 \pi \Bigg [ \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{0}^{\frac{h}{2}} \text {d}z f_2 \vec {\nabla }U_s(r)_z \nonumber \\{} & {} + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z f_4 \vec {\nabla }U_s(r)_z \nonumber \\{} & {} + \int _{0}^{\rho _{\mathrm{lim}}}\rho \text {d}\rho \int _{\frac{h}{2}}^{h} \text {d}z \sqrt{1-f_4^2} \vec {\nabla }U_s(r)_\rho \Bigg ] \end{aligned}$$
(B22)

Appendix C Angular variation of dipolar energy for homogeneous state

The magnetization of single-domain state along an arbitrary direction that makes an angle \(\psi\) with the z-axis can be represented as

$$\begin{aligned} \vec {M}=M_{0} \cos \psi \ \hat{z}+M_{0} \sin \psi \ \hat{x} \end{aligned}$$
(C23)

Using Eq. A1, the exchange energy is found to be zero.

For the dipolar energy, there is no volume contribution as the divergence of \(\vec {M}\) is again zero. We have only the surface contribution.

From Eq. A14,

$$\begin{aligned} \hat{n^\prime }\cdot \vec {M}(r^\prime )= & {} M_0 \frac{h}{\sqrt{h^2+(R-r)^2}} \cos \varphi ^{\prime } \sin \psi \\{} & {} +M_0 \frac{R-r}{\sqrt{h^2+(R-r)^2}} \cos \psi \end{aligned}$$

On the top surface

$$\begin{aligned} \hat{n^\prime }\cdot \vec {M}(r^\prime )=M_0 \cos \psi \end{aligned}$$

On the bottom surface

$$\begin{aligned} \hat{n^\prime }\cdot \vec {M}(r^\prime )=- M_0 \cos \psi \end{aligned}$$

The expression for surface potential after including the top, bottom and curved part becomes

$$\begin{aligned} U_s(r)= & {} \frac{1}{4\pi } \frac{h}{R-r} \sin \psi \nonumber \\{} & {} \int _S {\frac{M_0 cos\varphi ^{\prime }}{|r-r^\prime |}\rho ^\prime \text {d}\rho ^\prime \text {d}\varphi ^\prime }_{z^\prime = \left( \frac{R-\rho ^\prime }{R-r}\right) h}+ \frac{1}{4\pi } \cos \psi \nonumber \\{} & {} \times \int _S {\frac{M_0 }{|r-r^\prime |}\rho ^\prime \text {d}\rho ^\prime \text {d}\varphi ^\prime }_{z^\prime = \left( \frac{R-\rho ^\prime }{R-r}\right) h} \nonumber \\{} & {} +\frac{1}{4\pi } \cos \psi \int _S {\frac{M_0}{|r-r^\prime |}\rho ^\prime \text {d}\rho ^\prime \text {d}\varphi ^\prime }_{z^\prime =h}-\frac{1}{4\pi } \cos \psi \nonumber \\{} & {} \int _S {\frac{M_0}{|r-r^\prime |}\rho ^\prime \text {d}\rho ^\prime \text {d}\varphi ^\prime }_{z^\prime =0} \end{aligned}$$
(C24)

By using Eq. A11 and Eq. A12 along with \(\int _{0}^{2\pi }e^{-ip\varphi \prime } cos \varphi ^\prime \text {d}\varphi ^\prime =\pi \delta _{p1,-1}\) to solve the radial part, we have

$$\begin{aligned} U_s(r)= & {} \frac{M_0 h \sin \psi }{4\pi (R-r)} \int _{r}^{R} 2 \pi \cos \varphi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }J_{1}(k\rho )J_{1}(k\rho ^\prime )e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k \\{} & {} +\frac{M_0}{4 \pi } \cos \psi \int _{r}^{R} 2 \pi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k \\{} & {} + \frac{M_0}{4 \pi } \cos \psi \int _{0}^{r} 2 \pi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-k(h-z)}\text {d}k \\{} & {} -\frac{M_0}{4 \pi } \cos \psi \int _{0}^{R} 2 \pi \rho ^\prime \text {d}\rho ^\prime \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k \end{aligned}$$

Using Eq. A9, the surface dipolar interaction energy energy is calculated as

$$\begin{aligned} E_\mathrm{dip}^s= & {} \frac{\mu _{0}M_0}{2} \int _{\rho =0}^{R} \int _{\varphi =0}^{2\pi } \int _{z=0}^{h} \nonumber \\{} & {} \Bigg [ \sin \psi \cos \varphi \frac{\partial U_s(r)}{\partial \rho } -\frac{1}{\rho }\sin \psi \sin \varphi \frac{\partial U_s(r)}{\partial \varphi } \nonumber \\{} & {} + \cos \psi \frac{\partial U_s(r)}{\partial z} \Bigg ] \rho \text {d}\rho \text {d}\varphi \text {d}z \end{aligned}$$
(C25)
$$\begin{aligned} \frac{\partial U_s(r)}{\partial \rho }= & {} \frac{M_0}{4\pi } \frac{h}{R-r} \sin \psi \int _{r}^{R} 2 \pi \cos \varphi \ \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty } \left[ \frac{-1}{\rho }J_{1}(k\rho )+kJ_{0}(k\rho )\right] \\{} & {} \times J_{1}(k\rho ^\prime )e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k \\{} & {} -\frac{M_0}{4 \pi } \cos \psi \int _{r}^{R} 2 \pi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }kJ_{1}(k\rho )J_{0}(k\rho ^\prime )e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k \\{} & {} - \frac{M_0}{4 \pi } \cos \psi \int _{0}^{r} 2 \pi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }kJ_{1}(k\rho )J_{0}(k\rho ^\prime )e^{-k(h-z)}\text {d}k \\{} & {} +\frac{M_0}{4 \pi } \cos \psi \int _{0}^{R} 2 \pi \rho ^\prime \text {d}\rho ^\prime \int _{0}^{\infty }kJ_{1}(k\rho )J_{0}(k\rho ^\prime )e^{-kz}\text {d}k\\ \frac{\partial U_s(r)}{\partial \varphi }= & {} -\frac{M_0 h \sin \psi }{4\pi (R-r)} \int _{r}^{R} 2 \pi \sin \varphi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }J_{1}(k\rho ) J_{1}(k\rho ^\prime )e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k\\ \frac{\partial U_s(r)}{\partial z}= & {} \frac{M_0}{4\pi } \frac{h}{R-r} \sin \psi \int _{r}^{R} 2 \pi \cos \varphi \rho ^\prime \text {d}\rho ^\prime K_{11}\\{} & {} +\frac{M_0}{4 \pi } \cos \psi \int _{r}^{R} 2 \pi \rho ^\prime \text {d}\rho ^\prime K_{00} \\{} & {} + \frac{M_0}{4 \pi } \cos \psi \int _{0}^{r} 2 \pi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )ke^{-k(h-z)}\text {d}k \\{} & {} +\frac{M_0}{4 \pi } \cos \psi \int _{0}^{R} 2 \pi \rho ^\prime \text {d}\rho ^\prime \\{} & {} \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )ke^{-kz}\text {d}k \end{aligned}$$

Here \(K_{00}=\int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )k sgn\left( h\left( \frac{R-\rho ^\prime }{R-r}\right) -z\right) e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k\) and

\(K_{11}=\int _{0}^{\infty }J_{1}(k\rho )J_{1}(k\rho ^\prime )k sgn\left( h\left( \frac{R-\rho ^\prime }{R-r}\right) -z\right) e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k\)

$$\begin{aligned} E_\mathrm{dip}^s= & {} \frac{\mu _{0}M_0^2 \pi }{4} \frac{h}{R-r} \sin ^2 \psi \int _{0}^{R} \nonumber \\{} & {} \int _{0}^{h} \rho \text {d}\rho \text {d}z \int _{r}^{R} \rho ^\prime \text {d}\rho ^\prime K_{01} \nonumber \\{} & {} + \frac{\mu _{0}M_0^2 \pi }{2} \cos ^2 \psi \int _{0}^{R} \nonumber \\{} & {} \int _{0}^{h} \rho \text {d}\rho \text {d}z \int _{r}^{R} \rho ^\prime \text {d}\rho ^\prime K_{00} \nonumber \\{} & {} + \frac{\mu _{0}M_0^2 \pi }{2} \cos ^2 \psi \int _{0}^{R} \int _{0}^{h} \rho \text {d}\rho \text {d}z \nonumber \\{} & {} \int _{0}^{r} \rho ^\prime \text {d}\rho ^\prime \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )ke^{-k(h-z)}\text {d}k \nonumber \\{} & {} + \frac{\mu _{0}M_0^2 \pi }{2} \cos ^2 \psi \int _{0}^{R} \int _{0}^{h} \rho \text {d}\rho \text {d}z \nonumber \\{} & {} \int _{0}^{R} \rho ^\prime \text {d}\rho ^\prime \int _{0}^{\infty }J_{0}(k\rho )J_{0}(k\rho ^\prime )ke^{-kz}\text {d}k \end{aligned}$$
(C26)

Here \(K_{01}=\int _{0}^{\infty } k J_{0}(k\rho )J_{1}(k\rho ^\prime )e^{-k|z-h\left( \frac{R-\rho ^\prime }{R-r}\right) |}\text {d}k\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotti, A.P., Sahu, R. & Mishra, A.C. Magnetization reversal and coercivity mechanism in truncated conical nanowires of permalloy. J Mater Sci 58, 11115–11138 (2023). https://doi.org/10.1007/s10853-023-08722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08722-x

Navigation