Skip to main content

Advertisement

Log in

Tungsten oxide nanopowders: pulse alternating current electrosynthesis, structure optimization and performance in a flow photocatalytic fuel cell

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic fuel cell (PFC) is a promising technology to produce electrical energy from transformation of both light and chemical energy of waste products/biomass. Tungsten oxide (WO3) nanopowder is synthesized via a facile and ecologically sound top-down approach using pulse alternating current as an oxidant and aqueous ammonium chloride solution as an electrolyte without any surfactants and organic solvents. The large photocurrent density enhancement for WO3 nanopowder annealed at 500 °C demonstrates the importance of WO3 crystallinity in governing its photo-assisted water oxidation. The improved photoactivity of WO3-500 photoanode is due to reduction of the density of deep trap states boosting the charge transfer efficiency. The optimized WO3 photoanode was used to build up a solar light responsive PFC system with a Pt/C air-breathing cathode and the organic electron donors with different functional groups acting as fuels. The maximum power density value increases in the order of formic acid, glycerol, ethanol, and glucose. When glucose was used as the fuel, the WO3-Pt/C PFC obtained the highest power density (Pmax) and current density (Jmax) of 140.8 μW cm−2 and 704 μA cm−2, respectively. This study provides an efficient way for large-scale electrochemical preparation of WO3 nanopowders from bulk tungsten for solar light responsive waste products/biomass-fueled PFC system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support all plots within this paper are available from the corresponding author upon reasonable request.

References

  1. Wang Y, Zhang J, Balogun MS, Tong Y, Huang Y (2022) Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Mater Today Sustain 18:100118. https://doi.org/10.1016/j.mtsust.2022.100118

    Article  Google Scholar 

  2. Yang G, Zhu X, Cheng G et al (2021) J Mater Chem A 9:22781. https://doi.org/10.1039/D1TA04969K

    Article  CAS  Google Scholar 

  3. Shandilya P, Sambyal S, Sharma R, Mandyal P, Fang B (2022) J Hazard Mater 428:128218. https://doi.org/10.1016/j.jhazmat.2022.128218

    Article  CAS  Google Scholar 

  4. Dutta V, Sharma S, Raizada P et al (2021) J Environ Chem Eng 9:105018. https://doi.org/10.1016/j.jece.2020.105018

    Article  CAS  Google Scholar 

  5. Jelinska A, Bienkowski K, Jadwiszczak M et al (2018) ACS Catal 8:10573. https://doi.org/10.1021/acscatal.8b03497

    Article  CAS  Google Scholar 

  6. Hu C, Kelm D, Schreiner M, Wollborn T, Mädler L, Teoh WY (2015) Chemsuschem 8:4005. https://doi.org/10.1002/cssc.201500793

    Article  CAS  Google Scholar 

  7. He Y, Chen K, Leung MKH et al (2022) Chem Eng J 428:131074. https://doi.org/10.1016/j.cej.2021.131074

    Article  CAS  Google Scholar 

  8. Mikrut P, Mitoraj D, Beranek R, Macyk W (2021) Appl Surf Sci 566:150662. https://doi.org/10.1016/j.apsusc.2021.150662

    Article  CAS  Google Scholar 

  9. Wang G, Ling Y, Wang H, Xihong L, Li Y (2014) J Photochem Photobiol C Photochem Rev 19:35. https://doi.org/10.1016/j.jphotochemrev.2013.10.006

    Article  CAS  Google Scholar 

  10. Hong SJ, Jun H, Borse PH, Lee JS (2009) Int J Hydrogen Energy 34:3234. https://doi.org/10.1016/j.ijhydene.2009.02.006

    Article  CAS  Google Scholar 

  11. Kusiak-Nejman E, Wojnarowicz J, Morawski AW et al (2021) Appl Surf Sci 541:148416. https://doi.org/10.1016/j.apsusc.2020.148416

    Article  CAS  Google Scholar 

  12. Corby S, Francàs L, Kafizas A, Durrant JR (2020) Chem Sci 11:2907. https://doi.org/10.1039/C9SC06325K

    Article  CAS  Google Scholar 

  13. Ruan Q, Bayazit MK, Kiran V, Xie J, Wang Y, Tang J (2019) Chem Commun 55:7191. https://doi.org/10.1039/C9CC03084K

    Article  CAS  Google Scholar 

  14. Rinaldi FG, Arutanti O, Arif AF, Hirano T, Ogi T, Okuyama K (2018) ACS Omega 3:8963. https://doi.org/10.1021/acsomega.8b01110

    Article  CAS  Google Scholar 

  15. Feng X, Chen Y, Qin Z, Wang M, Guo L (2016) ACS Appl Mater Interfaces 8:18089. https://doi.org/10.1021/acsami.6b04887

    Article  CAS  Google Scholar 

  16. Jian L, Peng R, He Y, Wang X, Guo W (2023) Mater Lett 336:133897. https://doi.org/10.1016/j.matlet.2023.133897

    Article  CAS  Google Scholar 

  17. Novak TG, Kim J, DeSario PA, Jeon S (2021) Nanoscale Adv 3:5166. https://doi.org/10.1039/D1NA00384D

    Article  CAS  Google Scholar 

  18. Martínez-de A, la Cruz DS, Martínez ELC (2010) Solid State Sci 12:88. https://doi.org/10.1016/j.solidstatesciences.2009.10.010

    Article  CAS  Google Scholar 

  19. Ulyankina A, Leontyev I, Maslova O et al (2018) Mater Sci Semicond Process 73:111. https://doi.org/10.1016/j.mssp.2017.08.001

    Article  CAS  Google Scholar 

  20. Yanson AI, Antonov PV, Rodriguez P, Koper MTM (2013) Electrochim Acta 112:913. https://doi.org/10.1016/j.electacta.2013.01.056

    Article  CAS  Google Scholar 

  21. Gao D, Li H, Wei P, Wang Y, Wang G, Bao X (2022) Chin J Catal 43:1001. https://doi.org/10.1016/S1872-2067(21)63940-2

    Article  CAS  Google Scholar 

  22. Fichtner J, Watzele S, Garlyyev B et al (2020) ACS Catal 10:3131. https://doi.org/10.1021/acscatal.9b04974

    Article  CAS  Google Scholar 

  23. Wang Y, Meng Z, Chen H et al (2019) J Mater Chem C 7:1966. https://doi.org/10.1039/C8TC05698F

    Article  CAS  Google Scholar 

  24. Kromer ML, Monzó J, Lawrence MJ et al (2017) Langmuir 33:13295. https://doi.org/10.1021/acs.langmuir.7b02465

    Article  CAS  Google Scholar 

  25. Wu S, Li Y, Chen X, Liu J, Gao J, Li G (2019) Electrochem Commun 104:106479. https://doi.org/10.1016/j.elecom.2019.106479

    Article  CAS  Google Scholar 

  26. Tsarenko A, Gorshenkov M, Yatsenko A et al (2022) ChemEngineering 6:31

    Article  CAS  Google Scholar 

  27. Leontyev I, Kuriganova A, Kudryavtsev Y, Dkhil B, Smirnova N (2012) Appl Catal A 431–432:120. https://doi.org/10.1016/j.apcata.2012.04.025

    Article  CAS  Google Scholar 

  28. Ulyankina A, Leontyev I, Avramenko M, Zhigunov D, Smirnova N (2018) Mater Sci Semicond Process 76:7. https://doi.org/10.1016/j.mssp.2017.12.011

    Article  CAS  Google Scholar 

  29. Ng C, Ng YH, Iwase A, Amal R (2013) ACS Appl Mater Interface 5:5269. https://doi.org/10.1021/am401112q

    Article  CAS  Google Scholar 

  30. Ishida Y, Motono S, Doshin W, Tokunaga T, Tsukamoto H, Yonezawa T (2017) ACS Omega 2:5104. https://doi.org/10.1021/acsomega.7b00986

    Article  CAS  Google Scholar 

  31. Bourdin M, Gaudon M, Weill F et al (2019). Nanomater Basel Switzerland. https://doi.org/10.3390/nano9111555

    Article  Google Scholar 

  32. Saleem M, Iqbal J, Nawaz A, Islam B, Hussain I (2020) Int J Appl Ceram Technol 17:1918. https://doi.org/10.1111/ijac.13496

    Article  CAS  Google Scholar 

  33. Zheng H, Tachibana Y, Kalantar-zadeh K (2010) Langmuir 26:19148. https://doi.org/10.1021/la103692y

    Article  CAS  Google Scholar 

  34. Pu W, Song Z, Yan J et al (2019) J Mater Sci 54:12463. https://doi.org/10.1007/s10853-019-03780-6

    Article  CAS  Google Scholar 

  35. Liu Q, Wang F, Lin H et al (2018) Catal Sci Technol 8:4399. https://doi.org/10.1039/C8CY00994E

    Article  CAS  Google Scholar 

  36. Lu J, Xu C, Cheng L, Jia N, Huang J, Li C (2019) Mater Sci Semicond Process 101:214. https://doi.org/10.1016/j.mssp.2019.05.038

    Article  CAS  Google Scholar 

  37. Tong M, Yang J, Jin Q, Zhang X, Gao J, Li G (2019) J Mater Sci 54:10656. https://doi.org/10.1007/s10853-019-03645-y

    Article  CAS  Google Scholar 

  38. Zhao Y, Balasubramanyam S, Sinha R et al (2018) ACS Appl Energ Mater 1:5887. https://doi.org/10.1021/acsaem.8b00849

    Article  CAS  Google Scholar 

  39. Tang L, Feng Y, Chen W et al (2021) Catal Surv Asia 25:334. https://doi.org/10.1007/s10563-021-09336-6

    Article  CAS  Google Scholar 

  40. Guo S, Zhao X, Zhang W, Wang W (2018) Mater Sci Eng, B 227:129. https://doi.org/10.1016/j.mseb.2017.09.020

    Article  CAS  Google Scholar 

  41. Chen J, Chen C, Qin M et al (2022) Nat Commun 13:5382. https://doi.org/10.1038/s41467-022-33007-3

    Article  CAS  Google Scholar 

  42. El-Henawey MI, Kubas M, El-Shaer A, Salim E (2021) J Mater Sci: Mater Electron 32:21308. https://doi.org/10.1007/s10854-021-06633-8

    Article  CAS  Google Scholar 

  43. Pu Y-C, Wang G, Chang K-D et al (2013) Nano Lett 13:3817. https://doi.org/10.1021/nl4018385

    Article  CAS  Google Scholar 

  44. Jin H, Debroye E, Keshavarz M et al (2020) Mater Horiz 7:397. https://doi.org/10.1039/C9MH00500E

    Article  CAS  Google Scholar 

  45. Lui G, Jiang G, Fowler M, Yu A, Chen Z (2019) J Power Sour 425:69. https://doi.org/10.1016/j.jpowsour.2019.03.091

    Article  CAS  Google Scholar 

  46. Kalamaras E, Lianos P (2015) J Electroanal Chem 751:37. https://doi.org/10.1016/j.jelechem.2015.05.029

    Article  CAS  Google Scholar 

  47. Van Hal M, Campos R, Lenaerts S, De Wael K, Verbruggen SW (2021) Appl Catal B: Environ 292:120204. https://doi.org/10.1016/j.apcatb.2021.120204

    Article  CAS  Google Scholar 

  48. Xie S, Ouyang K, Ye X (2018) J Colloid Interface Sci 532:758. https://doi.org/10.1016/j.jcis.2018.07.032

    Article  CAS  Google Scholar 

  49. Bai J, Wang R, Li Y et al (2016) J Hazard Mater 311:51. https://doi.org/10.1016/j.jhazmat.2016.02.052

    Article  CAS  Google Scholar 

  50. Wang B, Zhang H, Lu X-Y, Xuan J, Leung MKH (2014) Chem Eng J 253:174. https://doi.org/10.1016/j.cej.2014.05.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Shared Research Center “Nanotechnologies” of Platov South-Russian State Polytechnic University (NPI) for XRD and EDX investigations. The XPS studies were performed using facilities of the Shared Research Center “National center of investigation of catalysts” at Boreskov Institute of Catalysis. The TEM study was carried out on the equipment of the Center Collective Use “Materials Science and Metallurgy”.

Funding

The study was funded by Russian Science Foundation (no. 21–79-00079), https://rscf.ru/project/21-79-00079/.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AU; Investigation: AU, AT, TM, AY, MG, VK; Methodology: AU, AK; Writing—Original draft: AU; Writing—Review & editing: AU, NS; Funding acquisition: AU.

Corresponding author

Correspondence to Anna Ulyankina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Naiqin Zhao

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 732 KB)

Flow photocatalytic fuel cell operation (MOV 30472 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyankina, A., Tsarenko, A., Molodtsova, T. et al. Tungsten oxide nanopowders: pulse alternating current electrosynthesis, structure optimization and performance in a flow photocatalytic fuel cell. J Mater Sci 58, 11187–11197 (2023). https://doi.org/10.1007/s10853-023-08697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08697-9

Navigation