Skip to main content
Log in

Hollow carbon nanospheres loaded with upconversion nanoparticles for chemo-photothermal synergistic cancer therapy

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanomaterials possess multidisciplinary capabilities in cancer diagnosis and treatment, including imaging and therapeutic, and thus have wide range of applications in the field of nanomedicine. To exploit these capabilities, herein we report a novel nanoplatform of upconversion nanoparticle (UCNPs)-decorated hollow mesoporous carbon nanoparticles (HMCNs@UCNPs) prepared by a facile hydrothermal approach. Morphological and structural analyses of the newly synthesized nanomaterial were performed using high-resolution TEM (HR-TEM), XRD, and BET techniques. The porous nature of the HMCNs@UCNPs nanomaterial further assisted to load anticancer drug (DOX, doxorubicin) effectively. Hence, the DOX-modified nanoplatform HMCNs@UCNPs-DOX worked as a multimodal theranostic probe, concurrently demonstrating chemotherapeutic as well as photothermal effects subjected to NIR-stimulation. Additionally, synergistic effects of the developed nanoplatform were confirmed by in vitro and in vivo studies using MCF-7 cell line and mouse models, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chan MH, Pan YT, Lee IJ, Chen CW, Chan YC, Hsiao M, Wang F, Sun L, Chen X, Liu RS (2017) Minimizing the heat effect of photodynamic therapy based on inorganic nanocomposites mediated by 808 nm near-infrared light. Small. https://doi.org/10.1002/smll.201700038

    Article  Google Scholar 

  2. Fan W, Yung B, Huang P, Chen X (2017) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117:13566–13638. https://doi.org/10.1021/acs.chemrev.7b00258

    Article  CAS  Google Scholar 

  3. Han L, Hao YN, Wei X, Chen XW, Shu Y, Wang JH (2017) Hollow copper sulfide nanosphere-doxorubicin/graphene oxide core-shell nanocomposite for photothermo-chemotherapy. ACS Biomater Sci Eng 3:3230–3235. https://doi.org/10.1021/acsbiomaterials.7b00643

    Article  CAS  Google Scholar 

  4. Hou J, Cao T, Idrees F, Cao C (2016) A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells. Nanoscale 8:451–457. https://doi.org/10.1039/c5nr06279a

    Article  CAS  Google Scholar 

  5. Li X, Lovell JF, Yoon J, Chen X (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17:657–674. https://doi.org/10.1038/s41571-020-0410-2

    Article  Google Scholar 

  6. Li X, Wang X, Sha L, Wang D, Shi W, Zhao Q, Wang S (2018) Thermosensitive lipid bilayer-coated mesoporous carbon nanoparticles for synergistic thermochemotherapy of tumor. ACS Appl Mater Interfaces 10:19386–19397

    Article  CAS  Google Scholar 

  7. Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 26:3176–3205. https://doi.org/10.1002/adma.201305319

    Article  CAS  Google Scholar 

  8. Liu J, Wang C, Wang X, Wang X, Cheng L, Li Y, Liu Z (2015) Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Func Mater 25:384–392. https://doi.org/10.1002/adfm.201403079

    Article  CAS  Google Scholar 

  9. Meng L, Deng Z, Niu L, Li F, Yan F, Wu J, Cai F, Zheng H (2015) A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics 5:1203–1213. https://doi.org/10.7150/thno.12295

    Article  CAS  Google Scholar 

  10. Qiu Y, Ding D, Sun W, Feng Y, Huang D, Li S, Meng S, Zhao Q, Xue LJ, Chen H (2019) Hollow mesoporous carbon nanospheres for imaging-guided light-activated synergistic thermo-chemotherapy. Nanoscale 11:16351–16361. https://doi.org/10.1039/c9nr04802b

    Article  CAS  Google Scholar 

  11. Sui C, Tan R, Chen Y, Yin G, Wang Z, Xu W, Li X (2021) MOFs-derived Fe–N codoped carbon nanoparticles as O(2)-evolving reactor and ROS generator for CDT/PDT/PTT synergistic treatment of tumors. Bioconjug Chem 32:318–327. https://doi.org/10.1021/acs.bioconjchem.0c00694

    Article  CAS  Google Scholar 

  12. Tian L, Tao L, Li H, Zhao S, Zhang Y, Yang S, Xue J, Zhang X (2019) Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma. Colloids Surf A 570:386–395. https://doi.org/10.1016/j.colsurfa.2019.03.030

    Article  CAS  Google Scholar 

  13. Wang J, Yao C, Shen B, Zhu X, Li Y, Shi L, Zhang Y, Liu J, Wang Y, Sun L (2019) Upconversion-magnetic carbon sphere for near infrared light-triggered bioimaging and photothermal therapy. Theranostics 9:608–619. https://doi.org/10.7150/thno.27952

    Article  CAS  Google Scholar 

  14. Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27. https://doi.org/10.1016/j.addr.2013.11.013

    Article  CAS  Google Scholar 

  15. de Melo-Diogo D, Pais-Silva C, Dias DR, Moreira AF, Correia IJ (2017) Strategies to improve cancer photothermal therapy mediated by nanomaterials. Adv Healthc Mater. https://doi.org/10.1002/adhm.201700073

    Article  Google Scholar 

  16. Corrales L, Matson V, Flood B, Spranger S, Gajewski TF (2017) Innate immune signaling and regulation in cancer immunotherapy. Cell Res 27:96–108. https://doi.org/10.1038/cr.2016.149

    Article  CAS  Google Scholar 

  17. Chen G, Qian Y, Zhang H, Ullah A, He X, Zhou Z, Fenniri H, Shen J (2021) Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl Mater Today 23:101003

    Article  Google Scholar 

  18. Zhao Y, Zhao T, Cao Y, Sun J, Zhou Q, Chen H, Guo S, Wang Y, Zhen Y, Liang XJ, Zhang S (2021) Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano 15:6517–6529. https://doi.org/10.1021/acsnano.0c08790

    Article  CAS  Google Scholar 

  19. Lopes RCFG, Rocha BGM, Macoas EMS, Marques EF, Martinho JMG (2022) Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2022.102667

    Article  Google Scholar 

  20. Wang S, Xi W, Wang Z, Zhao H, Zhao L, Fang J, Wang H, Sun L (2020) Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. J Mater Chem B 8:5883–5891. https://doi.org/10.1039/d0tb00993h

    Article  CAS  Google Scholar 

  21. Li P, Chen W, Yan Y, Chen B, Wang Y, Huang X (2019) Laser-triggered injectable gelatin hydrogels system for combinatorial upconversion fluorescence imaging and antitumor chemophotothermal therapy. ACS Appl Bio Mater 2:3722–3729. https://doi.org/10.1021/acsabm.9b00220

    Article  CAS  Google Scholar 

  22. Xie R, Lian S, Peng H, OuYang C, Li S, Lu Y, Cao X, Zhang C, Xu J, Jia L (2019) Mitochondria and nuclei dual-targeted hollow carbon nanospheres for cancer chemophotodynamic synergistic therapy. Mol Pharm 16:2235–2248. https://doi.org/10.1021/acs.molpharmaceut.9b00259

    Article  CAS  Google Scholar 

  23. Xu J, Gulzar A, Liu Y, Bi H, Gai S, Liu B, Yang D, He F, Yang P (2017) Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small. https://doi.org/10.1002/smll.201701841

    Article  Google Scholar 

  24. Yang M, Wang H, Wang Z, Han Z, Gu Y (2019) A Nd3+ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomater Sci 7:1686–1695. https://doi.org/10.1039/c8bm01570h

    Article  CAS  Google Scholar 

  25. Zhang H, Xu H, Wu M, Zhong Y, Wang D, Jiao Z (2015) A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J Mater Chem B 3:6480–6489. https://doi.org/10.1039/c5tb00634a

    Article  CAS  Google Scholar 

  26. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. https://doi.org/10.1002/smll.201602225

    Article  Google Scholar 

  27. Feng S, Lu J, Wang K, Di D, Shi Z, Zhao Q, Wang S (2022) Advances in smart mesoporous carbon nanoplatforms for photothermal-enhanced synergistic cancer therapy. Chem Eng J. https://doi.org/10.1016/j.cej.2022.134886

    Article  Google Scholar 

  28. Lv R, Jiang X, Yang F, Wang Y, Feng M, Liu J, Tian J (2019) Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy. Biomater Sci 7:4558–4567. https://doi.org/10.1039/c9bm00853e

    Article  CAS  Google Scholar 

  29. Chen Y, Ren J, Tian D, Li Y, Jiang H, Zhu J (2019) Polymer-upconverting nanoparticle hybrid micelles for enhanced synergistic chemo-photodynamic therapy: effects of emission-absorption spectral match. Biomacromol 20:4044–4052. https://doi.org/10.1021/acs.biomac.9b01211

    Article  CAS  Google Scholar 

  30. Dash A, Blasiak B, Tomanek B, Latta P, van Veggel F (2021) Target-specific magnetic resonance imaging of human prostate adenocarcinoma using NaDyF4-NaGdF4 core-shell nanoparticles. ACS Appl Mater Interfaces 13:24345–24355. https://doi.org/10.1021/acsami.0c19273

    Article  CAS  Google Scholar 

  31. Zhao S, Tian R, Shao B, Feng Y, Yuan S, Dong L, Zhang L, Liu K, Wang Z, You H (2019) Designing of UCNPs@Bi@SiO2 hybrid theranostic nanoplatforms for simultaneous multimodal imaging and photothermal therapy. ACS Appl Mater Interfaces 11:394–402. https://doi.org/10.1021/acsami.8b19304

    Article  CAS  Google Scholar 

  32. Zhang X, Zhao Z, Zhang X, Cordes DB, Weeks B, Qiu B, Madanan K, Sardar D, Chaudhuri J (2014) Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window. Nano Res 8:636–648. https://doi.org/10.1007/s12274-014-0548-2

    Article  CAS  Google Scholar 

  33. Joshi R, Perala RS, Shelar SB, Ballal A, Singh BP, Ningthoujam RS (2021) Super bright red upconversion in NaErF4:0.5%Tm@NaYF4:20%Yb nanoparticles for anti-counterfeit and bioimaging applications. ACS Appl Mater Interfaces 13:3481–3490. https://doi.org/10.1021/acsami.0c21099

    Article  CAS  Google Scholar 

  34. Kaczmarek AM, Suta M, Rijckaert H, Abalymov A, Van Driessche I, Skirtach AG, Meijerink A, Van Der Voort P (2020) Visible and NIR upconverting Er3+-Yb3+ luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry. Adv Funct Mater. https://doi.org/10.1002/adfm.202003101

    Article  Google Scholar 

  35. Lyu Y, Xie C, Chechetka SA, Miyako E, Pu K (2016) Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J Am Chem Soc 138:9049–9052. https://doi.org/10.1021/jacs.6b05192

    Article  CAS  Google Scholar 

  36. Ansari AA, Labis JP, Khan A (2021) Biocompatible NaYF4: Yb, Er upconversion nanoparticles: colloidal stability and optical properties. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2021.101390

    Article  Google Scholar 

  37. Qiu JB, Kawamoto Y (2002) Blue up-conversion luminescence and energy transfer process in Nd3+–Yb3+–Tm3+ co-doped ZrF4-based glasses. J Appl Phys 91:954–959. https://doi.org/10.1063/1.1428805

    Article  CAS  Google Scholar 

  38. Gouveia-Neto AS, da Costa EB, dos Santos PV, Bueno LA, Ribeiro SJL (2003) Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. J Appl Phys 94:5678–5681. https://doi.org/10.1063/1.1618352

    Article  CAS  Google Scholar 

  39. Ding D, Li S, Xu H, Zhu L, Meng S, Liu J, Lin Q, Leung SW, Sun W, Li Y, Chen H (2021) X-ray-activated simultaneous near-infrared and short-wave infrared persistent luminescence imaging for long-term tracking of drug delivery. ACS Appl Mater Interfaces 13:16166–16172. https://doi.org/10.1021/acsami.1c02372

    Article  CAS  Google Scholar 

  40. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250. https://doi.org/10.1016/j.ejps.2014.05.021

    Article  CAS  Google Scholar 

  41. Akl MA, Kamel AM, El-Ghaffar MAA (2023) Biodegradable functionalized magnetite nanoparticles as binary-targeting carrier for breast carcinoma. BMC Chem 17:1–18

    Article  Google Scholar 

  42. Nguyen TN, Nguyen TT, Nghiem TH, Nguyen DT, Tran TTH, Vu D, Nguyen TBN, Nguyen TMH, Nguyen VT, Nguyen MH (2021) Optical properties of doxorubicin hydrochloride load and release on silica nanoparticle platform. Molecules 26:3968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Natural Science Foundation of China (22274148), the Jilin Science and Technology Development Program (YDZJ202301ZYTS544, 20220204098YY, YDZJ202201ZYTS351), and the Jilin Province Development and Reform Commission (2023C041-8).

Author information

Authors and Affiliations

Authors

Contributions

XJ contributed to conceptualization, investigation, and writing-original draft. WZ, MHA, and WZ contributed to investigation and writing-original draft. LY and DDH contributed to cell experiments. YZ, NL, and CY contributed to investigation, data curation, formal analysis, validation, and supervision.

Corresponding authors

Correspondence to Yun Zhang, Ning Liu or Cong Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2023_8508_MOESM1_ESM.docx

Materials and characterization; XRD profile of NaGdF4: Yb3+, Nd3+, Tm3+; UV–Vis absorption spectra of HMCNs and HMCNs@UCNPs; UV–Vis absorption spectra of different concentrations of HMCNs@UCNPs; heating–cooling curve of the HMCNs@UCNPs aqueous dispersion (50 μg mL−1) under 808-nm laser irradiation (0.5 W cm−2); temperature changes of the HMCNs@UCNPs sample solution under one on–off laser irradiation cycle, and the linear fitting of − lnθ with time; body weight changes of the mice under different treatments; H&E images of heart, liver, spleen, lung, and kidney for various treatment groups after two-week treatment (DOCX 1654 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Zhou, W., Akhtar, M.H. et al. Hollow carbon nanospheres loaded with upconversion nanoparticles for chemo-photothermal synergistic cancer therapy. J Mater Sci 58, 8034–8046 (2023). https://doi.org/10.1007/s10853-023-08508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08508-1

Navigation