Skip to main content
Log in

A portable and quantitative detection of xanthine and xanthine oxidase based on cascade enzymatic reactions of Fe3O4@MWCNTs/Hemin

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sensitive and effective detection of xanthine oxidase (XOD) is essential for assessing human health. Herein, a dual-enzyme-based cascaded reaction system was developed for xanthine and xanthine oxidase assay based on the peroxidase (POD)-like catalytic activity of Fe3O4@MWCNTs/Hemin nanocomposite. The XOD could catalyze xanthine to produce H2O2, which is subsequently converted by Fe3O4@MWCNTs/Hemin into hydroxyl radicals (·OH) to oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to produce a light blue. Notably, it is demonstrated that the modification of MWCNTs and Hemin could significantly enhance the POD-like activity from 9.78 × 10−8 M s−1 (Vmax value of Fe3O4) to 23.34 10−8 M s−1 (Vmax value of Fe3O4@MWCNTs/Hemin), which makes the detection of xanthine oxidase more sensitive. By using the smartphone to capture the colorimetric signal of oxidized TMB (oxTMB), the assay can detect xanthine and XOD as low as 0.250 µM and 0.216 mU mL−1, respectively. The reliability of the method in human serum suggested satisfactory spiked recoveries in the range of 92.350–105%. This work provided a new insight for Fe3O4-based nanozyme design and monitoring XOD level in blood.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Wan Y, Zou B, Zeng H, Zhang L, Chen M, Fu G (2016) Inhibitory effect of verbascoside on xanthine oxidase activity. Int J Biol Macromol 93:609–614. https://doi.org/10.1016/j.ijbiomac.2016.09.022

    Article  CAS  Google Scholar 

  2. Kumar D, Kaur G, Negi A, Kumar S, Singh S, Kumar R (2014) Synthesis and xanthine oxidase inhibitory activity of 5, 6-dihydropyrazolo/pyrazolo 1, 5-c quinazoline derivatives. Bioorg Chem 57:57–64. https://doi.org/10.1016/j.bioorg.2014.08.007

    Article  CAS  Google Scholar 

  3. Sen S, Sarkar P (2020) A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine. Anal Chim Acta 1114:15–28. https://doi.org/10.1016/j.aca.2020.03.060

    Article  CAS  Google Scholar 

  4. Bortolotti M, Polito L, Battelli MG, Bolognesi A (2021) Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol 41:101882. https://doi.org/10.1016/j.redox.2021.101882

    Article  CAS  Google Scholar 

  5. Dario PG, Noel RS, Alicia ZM, Susana DNM, Marcelo GA, Fernandez H (2018) Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid. Microchem J 138:58–64. https://doi.org/10.1016/j.microc.2017.12.025

    Article  CAS  Google Scholar 

  6. Raj MA, John SA (2013) Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal Chem Acta 71:14–20. https://doi.org/10.1016/j.aca.2013.02.017

    Article  CAS  Google Scholar 

  7. Lu Q, Wang J, Li B, Weng C, Li X, Yang W, Yan X, Hong J, Zhu W, Zhou X (2020) Dual-emission reverse change ratio photoluminescence sensor based on a probe of nitrogen-doped Ti3C2 quantum dots@DAP to detect H2O2 and xanthine. Anal Chem 92(11):7770–7777. https://doi.org/10.1021/acs.analchem.0c00895

    Article  CAS  Google Scholar 

  8. Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, Xu X, Song Y, Ma Y, Hu QA (2017) Ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces 9(38):33011–33019. https://doi.org/10.1021/acsami.7b10548

    Article  CAS  Google Scholar 

  9. Sodum RS, Fiala ES (2001) Analysis of peroxynitrite reactions with guanine, xanthine, and adenine nucleosides by high-pressure liquid chromatography with electrochemical detection: C8-nitration and -oxidation. Chem Res Toxicol 14(4):438–450. https://doi.org/10.1021/tx000189s

    Article  CAS  Google Scholar 

  10. Devi R, Yadav S, Pundir CS (2012) Au-colloids-polypyrrole nanocomposite film-based xanthine biosensor. Colloids Surf A 394:38–45. https://doi.org/10.1016/j.colsurfa.2011.11.021

    Article  CAS  Google Scholar 

  11. Devi R, Yadav S, Pundir CS (2011) Electrochemical detection of xanthine in fish meat by xanthine oxidase immobilized on carboxylated multiwalled carbon nanotubes/polyaniline composite film. Biochem Eng J 58–59:148–153. https://doi.org/10.1016/j.bej.2011.09.008

    Article  CAS  Google Scholar 

  12. Devi R, Thakur M, Pundir CS (2011) Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film. Biosens Bioelectron 26(8):3420–3426. https://doi.org/10.1016/j.bios.2011.01.014

    Article  CAS  Google Scholar 

  13. Zhang Q, Zhang C, Yang M, Yu D, Yu C (2017) Pyrophosphate as substrate for alkaline phosphatase activity: a convenient flow-injection chemiluminescence assay. Luminescence 32(7):1150–1156. https://doi.org/10.1002/bio.3302

    Article  CAS  Google Scholar 

  14. Lian Y, Yuan X, Wang Y, Wei L (2022) Highly sensitive visual colorimetric sensor for xanthine oxidase detection by using MnO2-nanosheet-modified gold nanoparticles. Spectrochim Acta Part A 276:121219. https://doi.org/10.1016/j.saa.2022.121219

    Article  CAS  Google Scholar 

  15. Hong C, Zhang X, Wu C, Chen Q, Yang H, Yang D, Huang Z, Cai R, Tan W (2020) On-site colorimetric detection of cholesterol based on polypyrrole nanoparticles. ACS Appl Mater Interfaces 12(49):54426–54432. https://doi.org/10.1021/acsami.0c15900

    Article  CAS  Google Scholar 

  16. Sun K, Yang Y, Zhou H, Yin S, Qin W, Yu J, Chiu DT, Yuan Z, Zhang X, Wu C (2018) Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano 12(6):5176–5184. https://doi.org/10.1021/10.1021/acsnano.8b02188

    Article  CAS  Google Scholar 

  17. Liu S, Yang Y, Shi M, Shi H, Mao D, Mao X, Zhang Y (2022) Smartphone-based pure DNAzyme hydrogel platform for visible and portable colorimetric detection of cell-free DNA. ACS Sens 7(2):658–665. https://doi.org/10.1021/acssensors.1c02662

    Article  CAS  Google Scholar 

  18. Srisukjaroen R, Wechakorn K, Teepoo S (2022) A smartphone based-paper test strip chemosensor coupled with gold nanoparticles for the Pb2+ detection in highly contaminated meat samples. Microchem J 179:107438. https://doi.org/10.1016/j.microc.2022.107438

    Article  CAS  Google Scholar 

  19. Ge J, Yang L, Li Z, Wan Y, Mao D, Deng R, Zhou Q, Yang Y, Tan W (2022) A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics. J Hazard Mater 436:129199. https://doi.org/10.1016/j.jhazmat.2022.129199

    Article  CAS  Google Scholar 

  20. Ju J, Chen Y, Liu Z, Huang C, Li Y, Kong D, Shen W, Tang S (2022) Modification and application of Fe3O4 nanozymes in analytical chemistry: a review. Chin Chem Lett 34:107820. https://doi.org/10.1016/j.cclet.2022.107820

    Article  CAS  Google Scholar 

  21. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58. https://doi.org/10.1039/C1AN15738H

    Article  CAS  Google Scholar 

  22. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  CAS  Google Scholar 

  23. Zheng Y, Xu D, Sun L, Ji J, Sun J, Tong Z, Qin L, Zhang Y, Luo J, Liao D (2022) Construction of a bioinspired Fe3O4/N-HCS nanozyme for highly sensitive detection of GSH. Colloids Surf A 648:129046. https://doi.org/10.1016/j.colsurfa.2022.129046

    Article  CAS  Google Scholar 

  24. Li Z, Wang Y, Ni Y, Kokot S (2015) Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core–shell Fe3O4–SiO2 nanoparticles. Biosens Bioelectron 70:246–253. https://doi.org/10.1016/j.bios.2015.03.035

    Article  CAS  Google Scholar 

  25. Lu N, Zhang M, Ding L, Zheng J, Zeng C, Wen Y, Liu G, Aldalbahi A, Shi J, Song S, Zuo X, Wang L (2017) Yolk–shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9(13):4508–4515. https://doi.org/10.1039/c7nr00819h

    Article  CAS  Google Scholar 

  26. Nsabimana A, Kitte SA, Wu F, Qi L, Liu Z, Zafar MN, Luque R, Xu G (2019) Multifunctional magnetic Fe3O4/nitrogen-doped porous carbon nanocomposites for removal of dyes and sensing applications. Appl Surf Sci 467–468:89–97. https://doi.org/10.1016/j.apsusc.2018.10.119

    Article  CAS  Google Scholar 

  27. Zhang Y, Xu C, Li B (2013) Self-assembly of hemin on carbon nanotube as highly active peroxidase mimetic and its application for biosensing. RSC Adv 3(17):6044–6050. https://doi.org/10.1039/c3ra22525a

    Article  CAS  Google Scholar 

  28. Liu YQ, Shen HX (2004) Preparation of hemin modified glassy carbon electrode and its interacting mechanism. Chin J Anal Chem 32(1):41–45

    CAS  Google Scholar 

  29. Geng ZX, Miao YR, Zhang GL, Liang X (2023) Colormetric biosensor based on smartphone: State-of-art. Sens Actuators A 349:114056. https://doi.org/10.1016/j.sna.2022.114056

    Article  CAS  Google Scholar 

  30. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290. https://doi.org/10.1021/nn1029586

    Article  CAS  Google Scholar 

  31. Samadi A, Ahmadi R, Hosseini SM (2019) Influence of TiO2-Fe3O4-MWCNT hybrid nanotubes on piezoelectric and electromagnetic wave absorption properties of electrospun PVDF nanocomposites. Org Electron 75:105405. https://doi.org/10.1016/j.orgel.2019.105405

    Article  CAS  Google Scholar 

  32. Wang H, Jiang H, Wang S, Shi W, He J, Liu H, Huang YJ (2014) Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv 4(86):45809–45815. https://doi.org/10.1039/c4ra07327d

    Article  CAS  Google Scholar 

  33. Chishti AN, Ni L, Guo F, Lin X, Liu Y, Wu H, Chen M, Diao GW (2021) Magnetite-Silica core-shell nanocomposites decorated with silver nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of methylene blue dye in the water. J Environ Chem Eng 9(2):104948. https://doi.org/10.1016/j.jece.2020.104948

    Article  CAS  Google Scholar 

  34. Chishti AN, Guo F, Aftab A, Ma Z, Liu Y, Chen M, Gautam J, Chen C, Ni L, Diao G (2021) Synthesis of silver doped Fe3O4/C nanoparticles and its catalytic activities for the degradation and reduction of methylene blue and 4-nitrophenol. Appl Surf Sci 546:149070. https://doi.org/10.1016/j.apsusc.2021.149070

    Article  CAS  Google Scholar 

  35. Tom RT, Pradeep T (2005) Interaction of azide ion with hemin and cytochrome c immobilized on Au and Ag nanoparticles. Langmuir 21(25):11896–11902. https://doi.org/10.1021/la052035o

    Article  CAS  Google Scholar 

  36. Yuan Y, Yuan R, Chai Y, Zhuo Y, Gan X, Bai L (2012) 3,4,9,10-perylenetetracarboxylic acid/hemin nanocomposites act as redox probes and electrocatalysts for constructing a pseudobienzyme-channeling amplified electrochemical aptasensor. Chemistry-a European Journal 18(44):14186–14191. https://doi.org/10.1002/chem.201103960

    Article  CAS  Google Scholar 

  37. Solomonov I, Osipova M, Feldman Y, Baehtz C, Kjaer K, Robinson IK, Webster GT, McNaughton D, Wood BR, Weissbuch I, Leiserowitz L (2007) Crystal nucleation, growth, and morphology of the synthetic malaria pigment beta-hematin and the effect thereon by quinoline additives: the malaria pigment as a target of various antimalarial drugs. J Am Chem Soc 129(9):2615–2627. https://doi.org/10.1021/ja0674183

    Article  CAS  Google Scholar 

  38. Liu HY, Xu HX, Zhu LL, Wen JJ, Qiu YB, Gu CC, Li LH (2021) Colorimetric detection of hydrogen peroxide and glutathione based on peroxidase mimetic activity of Fe3O4-sodium lignosulfonate nanoparticles. Chin J Anal Chem 49(9):E21160–E21169. https://doi.org/10.1016/S1872-2040(21)60113-5

    Article  Google Scholar 

  39. Dong YI, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976. https://doi.org/10.1039/C2NR12109C

    Article  CAS  Google Scholar 

  40. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  41. Chen J, Shu Y, Li H, Xu Q, Hu X (2018) Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 189:254–261. https://doi.org/10.1016/j.talanta.2018.06.075

    Article  CAS  Google Scholar 

  42. Du H, Li SJ (2022) Inhibition of porphyra polysaccharide on xanthine oxidase activity and its inhibition mechanism. Spectrochim Acta Part A 266:120446. https://doi.org/10.1016/j.saa.2021.120446

    Article  CAS  Google Scholar 

  43. Yao J, Xie Z, Zeng X, Wang L, Yue T (2022) Bimetallic Eu/Fe-MOFs ratiometric fluorescent nanoenzyme for selective cholesterol detection in biological serum: synthesis, characterization, mechanism and DFT calculations. Sens Actuators B 354:130760. https://doi.org/10.1016/j.snb.2021.130760

    Article  CAS  Google Scholar 

  44. Fang WS, Li CL, Huang ZP, Li YH (2006) A review of xanthine oxidase research in bovine milk. Food and Machinery 22(1):4

    Google Scholar 

  45. Li Z, Liu X, Liang XH, Zhong J, Guo L, Fu F (2019) Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO3 nanosheets. Talanta 204:278–284. https://doi.org/10.1016/j.talanta.2019.06.003

    Article  CAS  Google Scholar 

  46. Pan H, Cui R, Zhu JJ (2018) CdTe quantum dots as probes for near-infrared fluorescence biosensing using biocatalytic growth of au nanoparticles. J Phys Chem B 112(51):16895–16901. https://doi.org/10.1021/jp807251k

    Article  CAS  Google Scholar 

  47. Wu X, Chen T, Wang J, Yang G (2018) Few-layered MoSe2 nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H2O2 and xanthine. J Mater Chem B 6(1):105–111. https://doi.org/10.1039/C7TB02434G

    Article  CAS  Google Scholar 

  48. Wang M, Zhang JB, Zhou XB, Sun HL, Su XG (2000) Fluorescence sensing strategy for xanthine assay based on gold nanoclusters and nanozyme. Sens Actuators B 358:131488. https://doi.org/10.1016/j.snb.2022.131488

    Article  CAS  Google Scholar 

  49. Hong CY, Guan LY, Huang L, Hong XS, Huang ZY (2021) Colorimetric determination of xanthine with xanthine oxidase and WSe2 nanosheets as a peroxidase mimic. New J Chem 45(45):10459–10465. https://doi.org/10.1039/D1NJ00819F

    Article  CAS  Google Scholar 

  50. Chen HY, Zheng HM, Li W, Li QF (2022) Ultrafast synthesized monometallic nanohybrids as an efficient quencher and recognition antenna of upconversion nanoparticles for the detection of xanthine with enhanced sensitivity and selectivity. Talanta 245:123471. https://doi.org/10.1016/j.talanta.2022.123471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was greatly supported by Yunnan Fundamental Research Projects (No. 202001AT070002), Major Science and Technology Project of Yunnan Province (No. 202002AE320006), Joint Specialized Fund for Applied Fundamental Research Program of the Department of Science and Technology of Yunnan Province—Kunming Medical University (No. 2018FE001(-133)), and the Analysis and Testing Foundation of Kunming University of Science and Technology (No. 2021M20192118096 and 2021T20200097).

Author information

Authors and Affiliations

Authors

Contributions

YW was involved in investigation, methodology and writing—original draft. QL was responsible for investigation and methodology. QX contributed to writing—reviewing and editing. YY took part in validation and writing—reviewing and editing. DY participated in methodology, investigation and writing—reviewing and editing.

Corresponding author

Correspondence to Dezhi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research was approved by the Kunming University of Science and Technology Ethic Committee, and all experiments were performed in accordance with the Guideline for Experimentation of Kunming University of Science and Technology.

Informed consent

The blood samples were collected from volunteers who gave informed written consent for inclusion.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Q., Xia, Q. et al. A portable and quantitative detection of xanthine and xanthine oxidase based on cascade enzymatic reactions of Fe3O4@MWCNTs/Hemin. J Mater Sci 58, 7441–7455 (2023). https://doi.org/10.1007/s10853-023-08449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08449-9

Navigation