Skip to main content
Log in

Fabrication of recyclable magnetic Fe3O4–SiO2–Cu2O/Cu core–shell nano-catalyst for high-efficient reduction of aromatic nitro compound

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetic core–shell nanomaterial Fe3O4–SiO2–Cu2O/Cu was first successfully synthesized using an economical strategy. Using Fe3O4 as a magnetic center for easy recycling and SiO2 as the connecting layer, Cu elements were evenly and steadily distributed on the surface of the Fe3O4–SiO2–Cu2O/Cu core–shell nanostructure. The magnetic catalyst performed outstanding catalytic reduction activity for 4-nitrophenol (4-NP), and the complete catalytic reduction of 4-NP was achieved within only 5 min. What’s more, the catalyst could be well recycled, and the catalytic efficiency remained more than 90% after being reused 24 times.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  1. Fatima R, Afridi MN, Kumar V, Lee J, Ali I, Kim KH, Kim JO (2019) Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J Clean Prod 231:899–912. https://doi.org/10.1016/j.jclepro.2019.05.292

    Article  CAS  Google Scholar 

  2. Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250:902–909. https://doi.org/10.1016/j.biortech.2017.12.007

    Article  CAS  Google Scholar 

  3. Hasan Z, Cho D-W, Chon C-M, Yoon K, Song H (2016) Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chem Eng J 298:183–190. https://doi.org/10.1016/j.cej.2016.04.029

    Article  CAS  Google Scholar 

  4. Yan J, Wang X, Gong P, Wang C (2021) Nitrated polycyclic aromatic compounds in the atmospheric environment: a review. Crit Rev Env Sci Tec 51:1159–1185. https://doi.org/10.1080/10643389.2020.1748486

    Article  CAS  Google Scholar 

  5. Yang KC, Ji M, Liang B, Zhao YX, Zhai SY, Ma ZH, Yang ZF (2020) Bioelectrochemical degradation of monoaromatic compounds: current advances and challenges. J Hazard Mater 398:122892–122908. https://doi.org/10.1016/j.jhazmat.2020.122892

    Article  Google Scholar 

  6. Yao L, Zhang L, Long B, Dai Y, Ding Y (2021) N-heterocyclic hyper-cross-linked polymers for rapid and efficient adsorption of organic pollutants from aqueous solution. J Mol Liq 325:115002–1115010. https://doi.org/10.1016/j.molliq.2020.115002

    Article  CAS  Google Scholar 

  7. Liang W, Lu Y, Li N, Li H, Zhu F (2020) Microwave-assisted synthesis of magnetic surface molecular imprinted polymer for adsorption and solid phase extraction of 4-nitrophenol in wastewater. Microchem J 159:105316–105326. https://doi.org/10.1016/j.microc.2020.105316

    Article  CAS  Google Scholar 

  8. Zhu X, Ni J (2011) The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron. Electrochim Acta 56:10371–10377. https://doi.org/10.1016/j.electacta.2011.05.062

    Article  CAS  Google Scholar 

  9. Singh S, Kumar N, Kumar M, Jyoti AA, Mizaikoff B (2017) Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem Eng J 313:283–292. https://doi.org/10.1016/j.cej.2016.12.049

    Article  CAS  Google Scholar 

  10. Xiong P, Fu Y, Wang L, Wang X (2012) Multi-walled carbon nanotubes supported nickel ferrite: a magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. Chem Eng J 195–196:149–157. https://doi.org/10.1016/j.cej.2012.05.007

    Article  CAS  Google Scholar 

  11. Jiang X-H, Wang L-C, Yu F et al (2018) Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation. ACS Sustainable Chem Eng 6:12695–12705. https://doi.org/10.1021/acssuschemeng.8b01695

    Article  CAS  Google Scholar 

  12. Karlova P, Gelbicova T, Sedlacek I (2016) Substrate interactions between 4-nitrophenol and 4-nitrotoluene during biodegradation of their mixture. Desalin Water Treat 57:2759–2765. https://doi.org/10.1080/19443994.2015.1071285

    Article  CAS  Google Scholar 

  13. Wang Y, Hatt JK, Tsementzi D et al (2017) Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem. Appl Environ Microb 83:1–19. https://doi.org/10.1128/aem.03321-16

    Article  CAS  Google Scholar 

  14. Wang C, Zhang H, Feng C, Gao S, Shang N, Wang Z (2015) Multifunctional Pd@MOF core–shell nanocomposite as highly active catalyst for p-nitrophenol reduction. Catal Commun 72:29–32. https://doi.org/10.1016/j.catcom.2015.09.004

    Article  CAS  Google Scholar 

  15. Chen H, Yang M, Tao S, Chen G (2017) Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Appl Catal B-Environ 209:648–656. https://doi.org/10.1016/j.apcatb.2017.03.038

    Article  CAS  Google Scholar 

  16. Chu C, Rao S, Ma Z, Han H (2019) Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol. Appl Catal B-Environ 256:117792–117810. https://doi.org/10.1016/j.apcatb.2019.117792

    Article  CAS  Google Scholar 

  17. Guo M, He J, Li Y, Ma S, Sun X (2016) One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J Hazard Mater 310:89–97. https://doi.org/10.1016/j.jhazmat.2016.02.016

    Article  CAS  Google Scholar 

  18. Fu Y, Huang T, Jia B, Zhu J, Wang X (2017) Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl Catal B-Environ 202:430–437. https://doi.org/10.1016/j.apcatb.2016.09.051

    Article  CAS  Google Scholar 

  19. Islam MR, Ferdous M, Sujan MI, Mao X, Zeng H, Azam MS (2020) Recyclable Ag-decorated highly carbonaceous magnetic nanocomposites for the removal of organic pollutants. J Colloid Interface Sci 562:52–62. https://doi.org/10.1016/j.jcis.2019.11.119

    Article  CAS  Google Scholar 

  20. Bai Y, Wang Q, Du C et al (2019) Three-dimensional Cu/C porous composite: facile fabrication and efficient catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 553:768–777. https://doi.org/10.1016/j.jcis.2019.06.079

    Article  CAS  Google Scholar 

  21. Huang C, Ye W, Liu Q, Qiu X (2014) Dispersed Cu2O Octahedrons on h-BN Nanosheets for p-Nitrophenol Reduction. ACS Appl Mater Interfaces 6:14469–14476. https://doi.org/10.1021/am5037737

    Article  CAS  Google Scholar 

  22. Jin L, He G, Xue J, Xu T, Chen H (2017) Cu/graphene with high catalytic activity prepared by glucose blowing for reduction of p-nitrophenol. J Clean Prod 161:655–662. https://doi.org/10.1016/j.jclepro.2017.05.162

    Article  CAS  Google Scholar 

  23. Mandlimath TR, Gopal B (2011) Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J Mol Catal A: Chem 350:9–15. https://doi.org/10.1016/j.molcata.2011.08.009

    Article  CAS  Google Scholar 

  24. Zhuang Y-T, Zhu T-T, Ruan M, Yu Y-L, Wang J-H (2017) A 2D porous Fe2O3/graphitic-C3N4/graphene ternary nanocomposite with multifunctions of catalytic hydrogenation, chromium (VI) adsorption and detoxification. J Mater Chem A 5:3447–3455. https://doi.org/10.1039/c6ta09774j

    Article  CAS  Google Scholar 

  25. Chen G, Wang F, Liu F, Zhang X (2014) One-pot preparation of Ni-graphene hybrids with enhanced catalytic performance. Appl Surf Sci 316:568–574. https://doi.org/10.1016/j.apsusc.2014.08.047

    Article  CAS  Google Scholar 

  26. Yeh C-C, Chen D-H (2014) Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity. Appl Catal B-Environ 150–151:298–304. https://doi.org/10.1016/j.apcatb.2013.12.040

    Article  CAS  Google Scholar 

  27. Cho D-W, Jeong K-H, Kim S, Tsang DCW, Ok YS, Song H (2018) Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation. Sci Total Environ 612:103–110. https://doi.org/10.1016/j.scitotenv.2017.08.187

    Article  CAS  Google Scholar 

  28. Sheng J, Wang L, Deng L et al (2018) MOF-templated fabrication of hollow Co4N@N-doped carbon porous nanocages with superior catalytic activity. ACS Appl Mater Interfaces 10:7191–7200. https://doi.org/10.1021/acsami.8b00573

    Article  CAS  Google Scholar 

  29. Sasmal AK, Dutta S, Pal T (2016) A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity. Dalton T 45:3139–3150. https://doi.org/10.1039/c5dt03859f

    Article  CAS  Google Scholar 

  30. Zhu XY, Qiao D, Yang LR et al (2021) Novel magnetic carbon supported molybdenum disulfide catalyst and its application in residue upgrading. Green Energy Environ 6:952–960. https://doi.org/10.1016/j.gee.2020.06.0252468-0257

    Article  CAS  Google Scholar 

  31. Nikpassand M, Fekri LZ, Varma RS, Hassanzadi L, Pashaki FS (2021) Green synthesis of novel 5-amino-bispyrazole-4-carbonitriles using a recyclable Fe3O4@SiO2@vanillin@thioglycolic acid nano-catalyst. RSC Adv 12:834–844. https://doi.org/10.1039/d1ra08001f

    Article  CAS  Google Scholar 

  32. Tago A, Yamauchi N, Nakashima K, Nagao D, Kobayashi Y (2021) Effect of silica-coating on crystal structure and magnetic properties of metallic nickel particles. Adv Powder Technol 32:4177–4185. https://doi.org/10.1016/j.apt.2021.09.023

    Article  CAS  Google Scholar 

  33. Demin AM, Maksimovskikh AI, Mekhaev AV et al (2021) Silica coating of Fe3O4 magnetic nanoparticles with PMIDA assistance to increase the surface area and enhance peptide immobilization efficiency. Ceram Int 47:23078–23087. https://doi.org/10.1016/j.ceramint.2021.04.310

    Article  CAS  Google Scholar 

  34. Ghimire PP, Jaroniec M (2021) Renaissance of Stober method for synthesis of colloidal particles: new developments and opportunities. J Colloid Interface Sci 584:838–865. https://doi.org/10.1016/j.jcis.2020.10.014

    Article  CAS  Google Scholar 

  35. Gadah RH, Basaleh AS (2020) Influence of doped platinum nanoparticles on photocatalytic performance of CuO-SiO2 for degradation of Acridine orange dye. Ceram Int 46:1690–1696. https://doi.org/10.1016/j.ceramint.2019.09.141

    Article  CAS  Google Scholar 

  36. Park J, Bae S (2019) Highly efficient and magnetically recyclable Pd catalyst supported by iron-rich fly ash@fly ash-derived SiO2 for reduction of p-nitrophenol. J Hazard Mater 371:72–82. https://doi.org/10.1016/j.jhazmat.2019.02.105

    Article  CAS  Google Scholar 

  37. Yue Q, Li J, Zhang Y et al (2017) Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J Am Chem Soc 139:15486–15493. https://doi.org/10.1021/jacs.7b09055

    Article  CAS  Google Scholar 

  38. Wong A, Lin Q, Griffin S, Nicholls A, Regalbuto JR (2017) Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 358:1427–1430. https://doi.org/10.1126/science.aao6538

    Article  CAS  Google Scholar 

  39. Bian T, Zhang J, Wang Z et al (2021) MoS2–induced hollow Cu2O spheres: synthesis and efficient catalytic performance in the reduction of 4-nitrophenol by NaBH4. Appl Surf Sci 539:148285–148292. https://doi.org/10.1016/j.apsusc.2020.148285

    Article  CAS  Google Scholar 

  40. Jin J, Wu W, Min H, Wu H, Wang S, Ding Y, Yang S (2017) A glassy carbon electrode modified with FeS nanosheets as a highly sensitive amperometric sensor for hydrogen peroxide. Microchim Acta 184:1389–1396. https://doi.org/10.1007/s00604-017-2105-7

    Article  CAS  Google Scholar 

  41. Jia W, Tian F, Zhang M et al (2021) Nitrogen-doped porous carbon-encapsulated copper composite for efficient reduction of 4-nitrophenol. J Colloid Interface Sci 594:254–264. https://doi.org/10.1016/j.jcis.2021.03.020

    Article  CAS  Google Scholar 

  42. Qi J, Lan H, Liu R, Liu H, Qu J (2020) Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe3O4 particles. Water Res 171:115448–115455. https://doi.org/10.1016/j.watres.2019.115448

    Article  CAS  Google Scholar 

  43. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering-Prc 4:559–566. https://doi.org/10.1016/j.eng.2018.06.001

    Article  CAS  Google Scholar 

  44. Kutluay S, Horoz S, Şahin Ö, Ekinci A, Ece MŞ (2021) Highly improved solar cell efficiency of Mn-doped amine groups-functionalized magnetic Fe3O4@SiO2 nanomaterial. Int J Energ Res 45:20176–20185. https://doi.org/10.1002/er.7097

    Article  CAS  Google Scholar 

  45. Das AK, Kuchi R, Van PC, Sohn Y, Jeong JR (2018) Development of an Fe3O4@Cu silicate based sensing platform for the electrochemical sensing of dopamine. RSC Adv 8:31037–31047. https://doi.org/10.1039/c8ra05885g

    Article  CAS  Google Scholar 

  46. Ren X, Tang L, Wang J et al (2021) Highly efficient catalytic hydrogenation of nitrophenols by sewage sludge derived biochar. Water Res 201:117360–117368. https://doi.org/10.1016/j.watres.2021.117360

    Article  CAS  Google Scholar 

  47. Deka P, Deka RC, Bharali P (2014) In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J Chem 38:1789–1793. https://doi.org/10.1039/c3nj01589k

    Article  CAS  Google Scholar 

  48. Farooqi ZH, Sakhawat T, Khan SR, Kanwal F, Usman M, Begum R (2015) Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol. Mater Sci-Poland 33:185–192. https://doi.org/10.1515/msp-2015-0025

    Article  CAS  Google Scholar 

  49. Kurnaz Yetim N, Aslan N, Koç MM (2020) Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: p-Nitrophenol case. J Environ Chem Eng 8:104258–104268. https://doi.org/10.1016/j.jece.2020.104258

    Article  CAS  Google Scholar 

  50. Liu Y, Lv M, Li L et al (2019) Synthesis of a highly active amino-functionalized Fe3O4@SiO2/APTS/Ru magnetic nanocomposite catalyst for hydrogenation reactions. Appl Organomet Chem 33:1–8. https://doi.org/10.1002/aoc.4686

    Article  CAS  Google Scholar 

  51. Lin F-h, Doong R-a (2011) Bifunctional Au−Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598. https://doi.org/10.1021/jp110956k

    Article  CAS  Google Scholar 

  52. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2021) Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@C composite. J Environ Chem Eng 9:104401–104410. https://doi.org/10.1016/j.jece.2020.104401

    Article  CAS  Google Scholar 

  53. Wi-Afedzi T, Kwon E, Tuan DD, Lin KA, Ghanbari F (2020) Copper hexacyanoferrate nanocrystal as a highly efficient non-noble metal catalyst for reduction of 4-nitrophenol in water. Sci Total Environ 703:134781–134788. https://doi.org/10.1016/j.scitotenv.2019.134781

    Article  CAS  Google Scholar 

  54. Lin J-Y, Chen P-Y, Kwon E et al (2021) One-step synthesized 3D-structured MOF foam for efficient and convenient catalytic reduction of nitrogen-containing aromatic compounds. J Water Process Eng 40:101933–101941. https://doi.org/10.1016/j.jwpe.2021.101933

    Article  Google Scholar 

  55. Wu Z, Zhu J, Wen W, Zhang X, Wang S (2022) Spherical covalent organic framework supported Cu/Ag bimetallic nanoparticles with highly catalytic activity for reduction of 4-nitrophenol. J Solid State Chem 311:123116–123123. https://doi.org/10.1016/j.jssc.2022.123116

    Article  CAS  Google Scholar 

  56. Lin JY, Lee J, Oh WD et al (2021) Hierarchical ZIF-decorated nanoflower-covered 3-dimensional foam for enhanced catalytic reduction of nitrogen-containing contaminants. J Colloid Interface Sci 602:95–104. https://doi.org/10.1016/j.jcis.2021.05.098

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Grant No. 21605084), the Natural Science Foundation for Young Scholars of Jiangsu Province, China (Grant No. BK20160983), and supported by Research Start-up Funds for Talent Scholars of Nanjing Tech University (No. 39837104).

Funding

The funding was provided by National Natural Science Foundation of China (Grant No: 21605084)

Author information

Authors and Affiliations

Authors

Contributions

SS: Investigation, Data curation, Writing—review & editing. ZZ: Investigation, Data curation, Writing—original draft. SL: Investigation, Data curation. JL: Data curation, Writing—original draft. HQ: Investigation, Data curation. XY: Formal analysis. YL: Supervision. WY: Supervision, Visualization. YC: Conceptualization, Methodology, Funding acquisition. The authors confirm that they agree to submit the manuscript.

Corresponding author

Correspondence to Yun Chen.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2023_8377_MOESM1_ESM.doc

Supplementary file 1. The synthesis of Fe3O4 and Fe3O4-SiO2 are shown in the supporting information. Fig. S1 SEM images of (a) Fe3O4, (b) Fe3O4-SiO2 and (c) Fe3O4-SiO2-Cu2O/Cu composite. Fig. S2 (a) XRD, (b) FT-IR, (c) XPS full spectrum, (d) XPS local magnification spectrum of Cu 2p and (e) SEM of Fe3O4-SiO2-Cu2O/Cu composite after catalysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhang, Z., Li, S. et al. Fabrication of recyclable magnetic Fe3O4–SiO2–Cu2O/Cu core–shell nano-catalyst for high-efficient reduction of aromatic nitro compound. J Mater Sci 58, 5587–5598 (2023). https://doi.org/10.1007/s10853-023-08377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08377-8

Navigation