Skip to main content

Advertisement

Log in

Electronic structure and photoconductivity properties of GaP under high pressure

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a typical representative of Ga-based III-V compound semiconductor material, the pressure-induced structural phase transition of gallium phosphide (GaP) has received more attention, while the present work explains the electronic structure and photoconductivity properties under high pressure, especially. The paper focuses on the high-pressure electronic structure and photoconductivity properties up to 50.0 GPa in GaP, along with the ZB (zinc-blende structure) to RS (rock salt structure) phase structural transition using enthalpy calculation. The discontinuous thermal expansion coefficient and unit cell volume collapse by 15.0–15.5% are observed at around 39.2 GPa due to reversible structural phase transition under compression and decompression conditions, which is also reflected in the measured discontinuous Hall coefficient and conductivity at approximately 39.0 GPa. The computed semiconductor-to-metal transition is determined to occur at 24.5 GPa by band-gap closure in good agreement with the experimentally determined transition pressure. The light illumination provides a potential way to reduce conductivity without effect on pressure of phase transition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the article and supplementary material.

References

  1. Mujica A, Rubio A, Munoz A, Needs RJ (2003) High-pressure phases of group-IV, III-V, and II-VI compounds. Rev Mod Phys 75:863–912

    Article  CAS  Google Scholar 

  2. Ackland GJ (2001) Theory of high pressure phases of group IV and III-V semiconductors. Phys Status Solidi B 223:361–368

    Article  CAS  Google Scholar 

  3. Lessio M, Carter EA (2015) What is the role of pyridinium in pyridine-catalyzed CO2 reduction on p-GaP photocathodes? J Am Chem Soc 137:13248–13252

    Article  CAS  Google Scholar 

  4. Kuyanova P, McNameea SA, LaPierrea RR (2018) GaAs quantum dots in a GaP nanowire photodetector. Nanotechnology 29:124003

    Article  Google Scholar 

  5. Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B (2018) Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew Chem Int Ed 57:11213–11217

    Article  CAS  Google Scholar 

  6. Cao D, Malakooti S, Kulkarni VN, Ren Y, Lu H (2021) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech Time-depend Mat 25:353–363

    Article  CAS  Google Scholar 

  7. Cao D, Malakooti S, Kulkarni VN et al (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25:71–93

    Article  Google Scholar 

  8. Wang X, Xu T, Andrade MJ et al (2021) The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. Chall Mech Time Dep Mater 2:25–32

    Google Scholar 

  9. De A, Pryor EC (2010) Predicted band structures of III-V semiconductors in the wurtzite phase. Phys Rev B 81:155210

    Article  Google Scholar 

  10. van der Molen KL, Tjerkstra RW, Mosk AP, Lagendijk A (2007) Spatial extent of random laser modes. Phys Rev Lett 98:143901

    Article  Google Scholar 

  11. Oehler F, Cattoni A, Scaccabarozzi A, Patriarche G, Glas F, Harmand J (2018) Measuring and modeling the growth dynamics of self-catalyzed GaP nanowire arrays. Nano Lett 18:701–708

    Article  CAS  Google Scholar 

  12. Baublitz M, Ruoff AL (1982) Diffraction studies of the high pressure phases of GaAs and GaP. J Appl Phys 53:6179–6185

    Article  CAS  Google Scholar 

  13. Sjöstedt E, Nordström L, Singh DJ (2000) An alternative way of linearizing the augmented plane-wave method. Solid State Commun 114:15–20

    Article  Google Scholar 

  14. Chen Z-G, Cheng L, Lu GQ, Zou J (2010) Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 21:375701

    Article  Google Scholar 

  15. Bolshakov AD, Shishkin I, Machnev A et al (2022) Single GaP nanowire nonlinear characterization with the aid of an optical trap. Nanoscale 14:993–1000

    Article  CAS  Google Scholar 

  16. Ribeiro-Silva CI, Rino JP, Gonçalves LGV, Picinin A (2011) An effective interaction potential for gallium phosphide. J Phys: Condens Matter 23:055801

    CAS  Google Scholar 

  17. Li M, Gao C, Peng G, He C, Hao A, Huang X, Zhang D, Yu C, Ma Y, Zou G (2007) Thickness measurement of sample in diamond anvil cell. Rev Sci Instrum 78:075106

    Article  Google Scholar 

  18. Nelmes RJ, McMahon MI, Belmonte SA (1997) Nonexistence of the diatomic β-tin structure. Phys Rev Lett 79:3668–3671

    Article  CAS  Google Scholar 

  19. Itic JP, Polian A, Jauberthie-Carillon C, Dartyge E, Fontaine A, Tolentino H, Tourillon G (1989) High-pressure phase transition in gallium phosphide: an x-ray-absorption spectroscopy study. Phys Rev B 40:9709–9714

    Article  Google Scholar 

  20. Garcia A, Cohen ML (1993) Effect of Ga 3d states on the structural properties of GaAs and GaP. Phys Rev B 47:6751–6754

    Article  CAS  Google Scholar 

  21. Aquilanti G, Libotte H, Crichton WA, Pascarelli S, Trapananti A, Itié J-P (2007) High-pressure phase of GaP: structure and chemical ordering. Phys Rev B 76:064103

    Article  Google Scholar 

  22. Polian A, Grimsditch M (1999) High-pressure elastic properties of gallium phosphide. Phys Rev B 60:1468–1470

    Article  CAS  Google Scholar 

  23. Weinstein BA, Piermarini GJ (1975) Raman scattering and phonon dispersion in Si and GaP at very high pressure. Phys Rev B 12:1172–1186

    Article  CAS  Google Scholar 

  24. Lavina B, Kim E, Cynn H et al (2018) Phosphorus dimerization in gallium phosphide at high pressure. Inorg Chem 57:2432–2437

    Article  CAS  Google Scholar 

  25. Onodera A, Kawal N, Ishizaki K, Spain IL (1974) Semiconductor-to-metal transition in GaP under high pressure. Solid State Commun 14:803–806

    Article  CAS  Google Scholar 

  26. Mujica A, Needs RJ (1997) Theoretical study of the high-pressure phase stability of GaP, InP, and InAs. Phys Rev B 55:9659–9670

    Article  CAS  Google Scholar 

  27. Homan CG, Kendall DP, Davidson TE, Frankel J (1975) GaP semiconducting- to-metal transition near 220 kbar and 298°K. Solid State Commun 17:831–832

    Article  CAS  Google Scholar 

  28. Van Vechten JA (1973) Quantum dielectric theory of electronegativity in covalent systems III pressure-temperature phase diagrams, heats of mixing, and distribution coefficients. Phys Rev B 7:1479–1507

    Article  Google Scholar 

  29. Bundy FP (1975) Ultrahigh pressure apparatus using cemented tungsten carbide pistons with sintered diamond tips. Rev Sci Instrum 46:1318–1324

    Article  CAS  Google Scholar 

  30. Li Y, Liu J, Xiao N et al (2020) Electrical transport properties of gallium phosphide under high pressure. Phys Status Solidi B 257:1900470

    Article  CAS  Google Scholar 

  31. Mukasa K, Matsuura K, Qiu M et al (2021) High-pressure phase diagrams of FeSe1−xTex: correlation between suppressed nematicity and enhanced superconductivity. Nat Commun 12:381

    Article  CAS  Google Scholar 

  32. Xiao T, Nagaoka Y, Wang X et al (2022) Nanocrystals with metastable high-pressure phases under ambient conditions. Science 377:870–874

    Article  CAS  Google Scholar 

  33. Service RF (2020) At last, room temperature superconductivity achieved. Science 370:273–274

    Article  Google Scholar 

  34. Akiba K, Umeshita N, Kobayashi TC (2022) Magnetotransport studies of the Sb square-net compound LaAgSb2 under high pressure and rotating magnetic fields. Phys Rev B 105:035108

    Article  CAS  Google Scholar 

  35. Moszczyńska I, Katrusiak A (2022) Competition between hydrogen and anagostic bonds in ruthenocene phases under high pressure. J Phys Chem C 126:5028–5035

    Article  Google Scholar 

  36. Zhang YM, Song T, Tian JH, Liu ZJ, Xue SM, Sun XW (2022) Ordered structure and mechanical properties of ternary Sc0.5TM0.5B2 (TM = Ti, V, Zr) alloys under high pressure. Ceram Int 48:16778–16791

    Article  CAS  Google Scholar 

  37. Ratzker B, Wagner A, Favelukis B, Ayalon I, Shrem R, Kalabukhov S, Frage N (2022) Effect of synthesis route on optical properties of Cr:Al2O3 transparent ceramics sintered under high pressure. J Alloys Compd 913:165186

    Article  CAS  Google Scholar 

  38. Marqueño T, Pellicer-Porres J, Errandonea D et al (2022) Lattice dynamics of zircon-type NdVO4 and scheelite-type PrVO4 under high-pressure. J Phys: Condens Matter 34:025404

    Google Scholar 

  39. Li Y, Liu J, Zhang P et al (2021) Electrical transport properties of EuTe under high pressure. J Mater Chem C 9:17371–17381

    Article  CAS  Google Scholar 

  40. Li Y, Gao Y, Han Y et al (2015) Metallization and Hall-effect of Mg2Ge under high pressure. Appl Phys Lett 107:142103

    Article  Google Scholar 

  41. Armitage NP, Tediosi R, Lévy F, Giannini E, Forro L, van der Marel D (2010) Infrared conductivity of elemental bismuth under pressure: evidence for an avoided lifshitz-type semimetal-semiconductor transition. Phys Rev Lett 104:237401

    Article  CAS  Google Scholar 

  42. Pickett WE, Erwin SC, Ethridge EC (1970) Reformulation of the LDA+U method for a local-orbital basis. Phys Rev B 58:1201–1209

    Article  CAS  Google Scholar 

  43. Loschen C, Carrasco J, Neyman KM, Illas F (2007) First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys Rev B 75:035115

    Article  Google Scholar 

  44. Winkelmann M, Napoli ED, Wortmann D, Blügel S (2020) Kerker mixing scheme for self-consistent muffin-tin based all-electron electronic structure calculations. Phys Rev B 102:195138

    Article  CAS  Google Scholar 

  45. Dandrea RG, Zunger A (1991) First-principles study of intervalley mixing: ultrathin GaAs/GaP superlattices. Phys Rev B 43:8962–8989

    Article  CAS  Google Scholar 

  46. Arbouche O, Belgoumène B, Soudini B, Azzaz Y, Bendaoud H, Amara K (2010) First-principles study on structural properties and phase stability of III-phosphide (BP, GaP, AlP and InP). Comp Mater Sci 47:685–692

    Article  CAS  Google Scholar 

  47. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  48. Schuurmans FJP, Vanmaekelbergh D, van de Lagemaat J, Lagendijk A (1999) Strongly photonic macroporous gallium phosphide networks. Science 284:141–143

    Article  CAS  Google Scholar 

  49. Li Y, Liu J, Zhang P et al (2020) Electrical transport properties of Weyl semimetal WTe2 under high pressure. J Mater Sci 55:14873–14882. https://doi.org/10.1007/s10853-020-05045-z

    Article  CAS  Google Scholar 

  50. Piermarini GJ, Block S, Barnett S, Forman RA (1975) Thermoelectric properties of different polymorphs of gallium phosphide; a first-principles study. J Appl Phys 46:2774–2780

    Article  CAS  Google Scholar 

  51. Zhang JY, Peng WL, Sun QY et al (2018) Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers. Appl Surf Sci 436:22–26

    Article  CAS  Google Scholar 

  52. Oliveira FS, Cipriano RB, da Silva FT, Romão EC, dos Santos CAM (2020) Simple analytical method for determining electrical resistivity and sheet resistance using the van der Pauw procedure. Sci Rep 10:16379

    Article  CAS  Google Scholar 

  53. Goldstein B, Perlman SS (1966) Electrical and optical properties of high-resistivity gallium phosphide. Phys Rev 148:715

    Article  CAS  Google Scholar 

  54. Haqa BU, AlFaify S, Ahmed R et al (2022) Thermoelectric properties of different polymorphs of gallium phosphide; a first-principles study. Ceram Int 48:642–647

    Article  Google Scholar 

  55. Kenner VE, Allen RE (1973) Calculations of surface thermal expansion. Phys Rev B 8:2916–2925

    Article  Google Scholar 

  56. Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2:380–404

    Article  Google Scholar 

  57. Dobrzynski L, Maradudin AA (1973) Thermal expansion at a crystal surface. Phys Rev B 7:1207–1223

    Article  CAS  Google Scholar 

  58. Dean PJ, Cuthbert JD, Thomas DG, Lynch RT (1967) Two-electron transitions in the luminescence of excitons bound to neutral donors in gallium phosphide. Phys Rev Lett 18:122–124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804249, 61804107), and the Natural Science Foundation of Tianjin City (Grant Nos. 18JCQNJC03700, 18JCYBJC85400, 20JCQNJC00180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Zhang, Q. et al. Electronic structure and photoconductivity properties of GaP under high pressure. J Mater Sci 58, 3657–3669 (2023). https://doi.org/10.1007/s10853-023-08254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08254-4

Navigation