Skip to main content
Log in

Crossover of thermal conductivity in SiC-reinforced ZrB2–HfB2 composites at elevated temperatures

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultra-high temperature ceramics, especially di-borides, are regarded as potential candidates for thermal protection system in hypersonic vehicles by virtue of their high thermal conductivity. However, studies on thermal conductivity behaviour of ultra-high temperature ceramic di-borides exhibit scattered data at high temperatures. Herein, we report a systematic study of a range of di-boride compositions aiming at multiple aspects including the effect of temperature on thermal conductivity of monolithic di-borides (ZrB2 and HfB2), effect of SiC and carbon nanotubes (CNTs) addition on ZrB2 and HfB2 with increasing temperature till 1200 °C, and effect on thermal conductivity with systematic incorporation of ZrB2 and HfB2 into each another. Highest experimental thermal conductivity (63–83 W m−1 K−1) observed in 20 vol% SiC reinforced ZrB2 composite (in the temperature range of 50–1200 °C) witnessed crossover (and drop) than that of monolithic sample (above 900 °C) due to increased phonon–phonon scattering in SiC with the rise in temperature. Concurrently, agglomerated CNT reinforcement further decreased thermal conductivity due to increased inhomogeneity in solid solutioning and enhanced phonon scattering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Harrington GJ, Hilmas GE (2014) Thermal conductivity of ZrB2 and HfB2. Ultra-high temperature ceramics: materials for extreme environment applications. Wiley, pp 197–235

    Google Scholar 

  2. Lawson JW, Daw MS, Bauschlicher CW (2011) Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations. J Appl Phys 110(8):083507

    Article  Google Scholar 

  3. Guérineau V, Julian-Jankowiak A (2018) Oxidation mechanisms under water vapour conditions of ZrB2–SiC and HfB2–SiC based materials up to 2400 °C. J Eur Ceram Soc 38(2):421–432

    Article  Google Scholar 

  4. Kubota Y et al (2017) Oxidation behavior of ZrB2–SiC–ZrC at 1700 °C. J Eur Ceram Soc 37(4):1187–1194

    Article  CAS  Google Scholar 

  5. Bai Y et al (2019) Sintering temperature effect on microstructure, mechanical and electrical properties of multi-layered ZrB2-based ceramics with thin Ti interlayer. J Eur Ceram Soc 39(14):3938–3948

    Article  CAS  Google Scholar 

  6. Gasch M, Johnson S, Marschall J (2008) Thermal conductivity characterization of hafnium diboride-based ultra-high-temperature ceramics. J Am Ceram Soc 91(5):1423–1432

    Article  CAS  Google Scholar 

  7. Van Wie D et al (2004) The hypersonic environment: required operating conditions and design challenges. J Mater Sci 39(19):5915–5924. https://doi.org/10.1023/B:JMSC.0000041688.68135.8b

    Article  Google Scholar 

  8. Kong Q et al (2022) Novel (Zr, Ti)B2–(Zr, Ti)C–SiC ceramics via reactive hot pressing. J Eur Ceram Soc 42(10):4045–4052

    Article  CAS  Google Scholar 

  9. Kurbatkina V et al (2018) Self-propagating high-temperature synthesis of refractory boride ceramics (Zr, Ta) B2 with superior properties. J Eur Ceram Soc 38(4):1118–1127

    Article  CAS  Google Scholar 

  10. Asl MS et al (2022) An interfacial survey on microstructure of ZrB2-based ceramics codoped with carbon fibers and SiC whiskers. Mater Chem Phys 275:125322

    Article  Google Scholar 

  11. Wang H, Lee S-H, Feng L (2014) The processing and properties of (Zr, Hf)B2–SiC nanostructured composites. J Eur Ceram Soc 34(15):4105–4109

    Article  CAS  Google Scholar 

  12. Xia C et al (2020) Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets. Ceram Int 46(16):24906–24915

    Article  CAS  Google Scholar 

  13. Ahmadi Z et al (2020) Phase transformation in spark plasma sintered ZrB2–V–C composites at different temperatures. Ceram Int 46(7):9415–9420

    Article  CAS  Google Scholar 

  14. Nguyen TP et al (2020) Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceram Int 46(11):19209–19216

    Article  CAS  Google Scholar 

  15. Nguyen V-H et al (2021) ZrB2–SiCw composites with different carbonaceous additives. Int J Refract Metal Hard Mater 95:105457

    Article  CAS  Google Scholar 

  16. Namini AS et al (2021) Role of TiCN addition on the characteristics of reactive spark plasma sintered ZrB2-based novel composites. J Alloy Compd 875:159901

    Article  Google Scholar 

  17. Samsonov G et al (1973) Thermal conductivity of diborides of group IV–VI transition metals. High temperature (USSR) (English translation), vol 10, pp 1193–1195

  18. Branscomb T, Hunter O Jr (1971) Improved thermal diffusivity method applied to TiB2, ZrB2, and HfB2 from 200–1300 °C. J Appl Phys 42(6):2309–2315

    Article  CAS  Google Scholar 

  19. Thompson MJ, Fahrenholtz WG, Hilmas GE (2012) Elevated temperature thermal properties of ZrB2 with carbon additions. J Am Ceram Soc 95(3):1077–1085

    CAS  Google Scholar 

  20. McClane DL, Fahrenholtz WG, Hilmas GE (2014) Thermal properties of (Zr, TM) B2 solid solutions with TM = Hf, Nb, W, Ti, and Y. J Am Ceram Soc 97(5):1552–1558

    Article  CAS  Google Scholar 

  21. Zimmermann JW et al (2008) Thermophysical properties of ZrB2 and ZrB2–SiC ceramics. J Am Ceram Soc 91(5):1405–1411

    Article  CAS  Google Scholar 

  22. Chakraborty S et al (2014) Mechanical and thermal properties of hot-pressed ZrB2-SiC composites. Metall Mater Trans A 45(13):6277–6284

    Article  CAS  Google Scholar 

  23. Zhang L et al (2011) Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. J Am Ceram Soc 94(8):2562–2570

    Article  CAS  Google Scholar 

  24. Ikegami M et al (2010) Effect of SiC particle dispersion on thermal properties of SiC particle-dispersed ZrB2 matrix composites. J Mater Sci 45(19):5420–5423. https://doi.org/10.1007/s10853-010-4641-y

    Article  CAS  Google Scholar 

  25. Hu C et al (2010) Microstructure and properties of ZrB2–SiC and HfB2–SiC composites fabricated by spark plasma sintering (SPS) using TaSi2 as sintering aid. J Ceram Soc Jpn 118(1383):997–1001

    Article  CAS  Google Scholar 

  26. Hassan R, Omar S, Balani K (2019) Solid solutioning in ZrB2 with HfB2: effect on densification and oxidation resistance. Int J Refract Metal Hard Mater 84:105041

    Article  Google Scholar 

  27. Nisar A, Balani K (2017) Phase and microstructural correlation of spark plasma sintered HfB2-ZrB2 based ultra-high temperature ceramic composites. Coatings 7(8):110

    Article  Google Scholar 

  28. Zhang C et al (2017) Solid solution synthesis of tantalum carbide-hafnium carbide by spark plasma sintering. J Am Ceram Soc 100(5):1853–1862

    Article  CAS  Google Scholar 

  29. Zhang C (2016) High temperature oxidation study of tantalum carbide-hafnium carbide solid solutions synthesized by spark plasma sintering. Florida International University, Miami

    Book  Google Scholar 

  30. Zhang C et al (2017) Thermal analysis of tantalum carbide-hafnium carbide solid solutions from room temperature to 1400 °C. Coatings 7(8):111

    Article  Google Scholar 

  31. Sitler SJ, Raja KS, Charit I (2017) ZrB2-HfB2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions. Mater Lett 188:239–243

    Article  CAS  Google Scholar 

  32. Dubey S et al (2022) Domination of phononic scattering in solid solutioning and interfaces of HfB2–ZrB2–SiC-carbon nanotube based ultra high temperature composites. Scr Mater 218:114776

    Article  CAS  Google Scholar 

  33. Hassan R, Balani K (2020) Oxidation kinetics of ZrB2-and HfB2-powders and their SiC reinforced composites. Corros Sci 177:109024

    Article  CAS  Google Scholar 

  34. Hassan R, Balani K (2021) Densification mechanism of spark plasma sintered ZrB2 and ZrB2-SiC ceramic composites. Mater Charact 179:111320

    Article  CAS  Google Scholar 

  35. Ruys AJ (2020) Metal-reinforced ceramics. Woodhead Publishing

  36. E‐13, A (2013) Standard test method for thermal diffusivity by the flash method. ASTM International West Conshohocken, PA

  37. Clark Iii L, Taylor RE (1975) Radiation loss in the flash method for thermal diffusivity. J Appl Phys 46(2):714–719

    Article  Google Scholar 

  38. Rhee S (1975) Porosity—thermal conductivity correlations for ceramic materials. Mater Sci Eng 20:89–93

    Article  CAS  Google Scholar 

  39. Zapata-Solvas E et al (2013) Mechanical properties of ZrB2-and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. J Eur Ceram Soc 33(7):1373–1386

    Article  CAS  Google Scholar 

  40. Monteverde F et al (2010) Densification, microstructure evolution and mechanical properties of ultrafine SiC particle-dispersed ZrB2 matrix composites. Boron rich solids. Springer, pp 261–272

    Chapter  Google Scholar 

  41. Deschamps JR, Flippen-Anderson JL (2002) Crystallography. In: Meyers RA (ed) Encyclopedia of physical science and technology. Academic

  42. Yin J et al (2017) Pressurelessly densified (Zr, Hf) B2-SiC ceramics by co-doping hafnium-boron carbides. J Alloys Compd 727:706–710

    Article  CAS  Google Scholar 

  43. Silvestroni L, Sciti D (2011) Densification of ZrB2–TaSi2 and HfB2–TaSi2 ultra-high-temperature ceramic composites. J Am Ceram Soc 94(6):1920–1930

    Article  CAS  Google Scholar 

  44. Patel M, Prasad VB, Jayaram V (2013) Heat conduction mechanisms in hot pressed ZrB2 and ZrB2–SiC composites. J Eur Ceram Soc 33(10):1615–1624

    Article  CAS  Google Scholar 

  45. Nilsson O et al (1997) Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide (300–2300 K). High Temp High Press 29(1):73–79

    Article  CAS  Google Scholar 

  46. Patil K, Gupta G (2019) Thermal investigations of multiwall carbon nanotubes. Int J Manag Technol Eng 9:1–6

    Google Scholar 

  47. Smith DS et al (2018) Grain boundary thermal resistance and finite grain size effects for heat conduction through porous polycrystalline alumina. Int J Heat Mass Transf 121:1273–1280

    Article  CAS  Google Scholar 

  48. Harris GL (1995) Properties of silicon carbide.: Institution of Engineering and Technology. P p 297

  49. Prochazka S (1975) Sintering of silicon carbide. Mass transport phenomena in ceramics. Springer, pp 421–431

    Chapter  Google Scholar 

  50. Raju K, Yoon D-H (2016) Sintering additives for SiC based on the reactivity: a review. Ceram Int 42(16):17947–17962

    Article  CAS  Google Scholar 

  51. McClane DL (2014) Thermal properties of zirconium diboride-transition metal boride solid solutions. In Materials science and engineering. Missouri University of Science and Technology, p. 127.

  52. Chakraborty S et al (2014) Mechanical and thermal properties of hot pressed ZrB2 system with TiB2. Int J Refract Metals Hard Mater 46:35–42

    Article  CAS  Google Scholar 

  53. Kumanek B, Janas D (2019) Thermal conductivity of carbon nanotube networks: a review. J Mater Sci 54(10):7397–7427. https://doi.org/10.1007/s10853-019-03368-0

    Article  CAS  Google Scholar 

  54. Hassanzadeh-Aghdam MK, Mahmoodi MJ, Safi M (2019) Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete. Compos Part B Eng. 174:106972

    Article  CAS  Google Scholar 

  55. Tian W-B et al (2008) Effect of carbon nanotubes on the properties of ZrB2–SiC ceramics. Mater Sci Eng A 487(1–2):568–573

    Article  Google Scholar 

  56. Touloukian Y, C Ho, D Dewitt (1977) Thermophysical properties of matter. In: Touloukian (ed) Thermal expansion-nonmetallic solids, IFI Plenum, New York, pp 784–789

  57. Fahrenholtz WG et al (2014) Ultra-high temperature ceramics: materials for extreme environment applications. The American Ceramic Society, Wiley

    Book  Google Scholar 

  58. Chai Z et al (2021) Thermal conductivity of spark plasma sintered SiC ceramics with Alumina and Yttria. J Eur Ceram Soc 41(6):3264–3273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Space Technology Cell-IIT Kanpur of Indian Space Research Organisation is acknowledged for funding this project. Rubia Hassan at IIT Kanpur acknowledges MHRD, Government of India for funding through Prime Ministers Research Fellowship. Kantesh Balani acknowledges Yadupati Singhania Memorial Chair from J.K. Cotton Limited. Advanced Centre for Materials Science (ACMS) at IIT Kanpur is acknowledged for extending XRD, SEM and Indentation facilities. Vikram Sarabhai Space Centre (VSSC) is acknowledged for extending thermal conductivity measurement facility.

Funding

This work was supported by Space Technology Cell-IIT Kanpur of Indian Space Research Organisation and MHRD Govt. of India through Prime Minister Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RH designed the experiments, analysed the data and wrote the paper. Vincent Xavier performed the thermal conductivity tests. TV, KB conceived the idea. TV, KB and SO edited the paper. KB guided in organising the paper and procured the funding.

Corresponding author

Correspondence to Kantesh Balani.

Ethics declarations

Conflict of interest

Authors declare that they have complied with the instructions on declaring interest in the guide for authors.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 410 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, R., Xavier, V., Thiruvenkatam, V. et al. Crossover of thermal conductivity in SiC-reinforced ZrB2–HfB2 composites at elevated temperatures. J Mater Sci 58, 1505–1522 (2023). https://doi.org/10.1007/s10853-022-08132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08132-5

Navigation