Skip to main content

Advertisement

Log in

A low-voltage electro-ionic soft actuator based on graphene nanoplatelets-sulfonated cellulose nanowhisker combined with microfibrillated cellulose

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-voltage soft actuators with large displacement, long actuation durability, and fast response time have aroused great attention in soft robotics, wearable devices, haptic devices, and implantable or disposal biomedical devices. Herein, we report a low-voltage electroactive ionic soft actuator based on the sulfonated cellulose nanowhisker (SCN), microfibrillated cellulose (MFC), ionic liquids (IL), and graphene nanoplatelet (GN). The proposed SCN/MFC-IL-GN (0.1wt%) actuator demonstrated a large bending displacement (6.6 mm under ± 1 V sinusoidal input signal at 0.1 Hz, low driving voltage (as low as 0.25 V), wide actuation frequency (0.1 to 5.0 Hz), and long actuation durability (96.7% retention for 1 h), all of which stemmed from the strong crosslinking and ionic interactions among the functional sulfonated groups of SCN, hydroxyl groups of MFC, IL, and GN. Furthermore, the designed actuator was successfully employed to imitate the human finger’s behaviors including turning on/off the flashlight and sliding electronic photographs on a smart phone screen. Therefore, the proposed SCN/MFC-IL-GN actuator has great potential in artificial muscles, soft robots, haptic devices, and wearable devices because of its low excitation voltage, large bending displacement, long actuation durability, and biofriendly property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Rus DL, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475

    Article  CAS  Google Scholar 

  2. Nan M, Wang F, Kim S, Li H, Jin Z, Bang D, Kim C-S, Park J-O, Choi E (2019) Ecofriendly high-performance ionic soft actuators based on graphene-mediated cellulose acetate. Sens Actuators B Chem 301:127127

    Article  CAS  Google Scholar 

  3. Nan M, Bang D, Zheng S, Go G, Darmawan BA, Kim S, Li H, Kim C-S, Hong A, Wang F, Park J-O, Choi E (2020) High-performance biocompatible nanobiocomposite artificial muscles based on ammonia-functionalized graphene nanoplatelets–cellulose acetate combined with PVDF. Sens Actuators B Chem 323:128709

    Article  CAS  Google Scholar 

  4. Wang F, Li Q, Park J-O, Zheng S, Choi E (2021) Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv Funct Mater 31(13):2007749

    Article  CAS  Google Scholar 

  5. Wang Y, Niu W, Zhang S, Ju B (2020) Solvent responsive single-material inverse opal polymer actuator with structural color switching. J Mater Sci 55(2):817–827

    Article  CAS  Google Scholar 

  6. Wang X, Zhou H, Kang H, Au W, Chen C (2021) Bio-inspired soft bistable actuator with dual actuations. Smart Mater Struct 30(12):125001

    Article  CAS  Google Scholar 

  7. Chang K-T, Liu C-Y, Liu J-H (2021) Bioinspired thermal/light-tunable actuators based on predesigned tilted liquid crystal actuators. J Mater Sci 56:12350–12363. https://doi.org/10.1007/s10853-021-06107-6

    Article  CAS  Google Scholar 

  8. Wang F, Jin Z, Zheng S, Li H, Cho S, Kim HJ, Kim S-J, Choi E, Park J-O, Park S (2017) High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens Actuators B 250:402–411

    Article  CAS  Google Scholar 

  9. Hu Y, Lian H, Zu L, Jiang Y, Hu Z, Li Y, Shen S, Cui X, Liu Y (2016) Durable electromechanical actuator based on graphene oxide with in situ reduced graphene oxide electrodes. J Mater Sci 51(3):1376–1381. https://doi.org/10.1007/s10853-015-9456-4

    Article  CAS  Google Scholar 

  10. Bian C, Zhu Z, Bai W, Chen H, Li Y (2020) Fast actuation properties of several typical IL-based ionic electro-active polymers under high impulse voltage. Smart Mater Struct 29(3):035014

    Article  CAS  Google Scholar 

  11. Wang F, Jeon J-H, Kim S-J, Park J-O, Park S (2016) An eco-friendly ultra-high performance ionic artificial muscle based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and carboxylated bacterial cellulose. J Mater Chem B 4(29):5015–5124

    Article  CAS  Google Scholar 

  12. Acerce M, Akdogan E, Chhowalla M (2017) Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549(7672):370–373

    Article  CAS  Google Scholar 

  13. Altinkaya E, Seki Y, Yılmaz Ö, Çetin L, Özdemir O, S,en I, Sever K, Gürses B, Sarikanat M (2016) Electromechanical performance of chitosan-based composite electroactive actuators. Compos Sci Technol 129:108–115

    Article  CAS  Google Scholar 

  14. Pagoli A, Chapelle F, Corrales-Ramon J-A, Mezouar Y, Lapusta Y (2021) Review of soft fluidic actuators: classification and materials modeling analysis. Smart Mater Struct 31(1):013001

    Article  Google Scholar 

  15. Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L (2020) High-performance ionic-polymer-metal composite: toward large-deformation fast-response artificial muscles. Adv Funct Mater 30(7):1908508

    Article  CAS  Google Scholar 

  16. Sudhawiyangkul T, Yoshida K, Eom SI, Kim J-W (2021) A multi-DOF soft microactuator integrated with flexible electro-rheological microvalves using an alternating pressure source. Smart Mater Struct 30(8):085006

    Article  Google Scholar 

  17. Wang F, Huang D, Li Q, Wu Y, Yan B, Wu Z, Park S (2023) Highly electro-responsive ionic soft actuator based on graphene nanoplatelets-mediated functional carboxylated cellulose nanofibers. Compos Sci Technol 231:109845

    Article  CAS  Google Scholar 

  18. Han J, Jiang W, Zhang H, Zhang Y, Feng X, Wang L, Niu D, Lei B, Liu H (2020) Untethered, ultra-light soft actuator based on positively charged 3D fluffy silica micro-nanofibers by electrospinning. J Mater Sci 55(27):12789–12800. https://doi.org/10.1007/s10853-020-04944-5

    Article  CAS  Google Scholar 

  19. Wang F, Kong Y, Shen F, Wang Y, Wang D, Li Q (2022) High-performance microfibrillated cellulose-based low voltage electroactive ionic artificial muscles in bioinspired applications. Compos Part B-Eng 228:109436

    Article  CAS  Google Scholar 

  20. Umrao S, Tabassian R, Kim J, Nguyen VH, Zhou Q, Nam S, Oh I-K (2019) MXene artificial muscles based on ionically cross-linked Ti3C2TX electrode for kinetic soft robotics. Sci Robot 4(33):eaaw7797

    Article  Google Scholar 

  21. Valentine A, Busbee T, Boley J, Raney J, Chortos A, Kotikian A, Berrigan J, Durstock M, Lewis J (2017) Hybrid 3D printing of soft electronics. Adv Mater 29(40):1703817

    Article  Google Scholar 

  22. Wu G, Wu X, Xu Y, Cheng H, Meng J, Yu Q, Shi X, Zhang K, Chen W, Chen S (2019) High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater 31(25):1806492

    Article  Google Scholar 

  23. Wang F, Wang L, Wang Y, Wang D (2022) Highly bendable ionic electroactive polymer actuator based on carboxylated bacterial cellulose by doping with MWCNT. Appl Phys A-Mater 128:911

    Article  CAS  Google Scholar 

  24. Liu Z, Liu YD, Shi Q, Liang Y (2021) Electroactive dielectric polymer gels as new-generation soft actuators: a review. J Mater Sci 56(27):14943–14963. https://doi.org/10.1007/s10853-021-06260-y

    Article  CAS  Google Scholar 

  25. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206

    Article  CAS  Google Scholar 

  26. Kim S-S, Jeon J-H, Kee C-D, Oh I-K (2013) Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS. Smart Mater Struct 22(8):085026

    Article  CAS  Google Scholar 

  27. Maha De Va S-K, Kim J (2010) An electro-active paper actuator made with cellulose–polypyrrole–ionic liquid nanocomposite: influence of ionic liquid concentration, type of anion and humidity. Smart Mater Struct 19(10):105014

    Article  Google Scholar 

  28. Wang N, Yi C, Kim J (2007) Electroactive paper actuator made with chitosan-cellulose films: effect of acetic acid. Macromol Mater Eng 292(6):748–753

    Article  CAS  Google Scholar 

  29. Hong C-H, Ki S-J, Jeon J-H, Che H-L, Park I-K, Kee C-D, Oh I-K (2013) Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos Sci Technol 87:135–141

    Article  CAS  Google Scholar 

  30. Liu S, Tao D, Bai H, Liu X (2012) Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J Appl Polym Sci 126(51):E282–E290

    Article  Google Scholar 

  31. Dadkhah Tehrani A, Neysi E (2013) Surface modification of cellulose nanowhisker throughout graft polymerization of 2-ethyl-2-oxazoline. Carbohydr Polym 97(1):98–104

    Article  CAS  Google Scholar 

  32. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  33. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  Google Scholar 

  34. Geim A-K (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  35. Zuchowska A, Chudy M, Brzózka Z, Dybko A (2017) Graphene as a new material in anticancer therapy-in vitro studies. Sens Actuators B Chem 243:152–165

    Article  CAS  Google Scholar 

  36. Stankovich S, Dikin D-A, Dommett G, Kohlhaas K-M, Zimney E-J, Stach E-A, Piner R-D, Nguyen S-T, Ruoff R-S (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  37. Cheedarala R-K, Jeon J-H, Kee C-D, Oh I-K (2015) Bio-inspired all-organic soft actuator based on a π-π stacked 3D ionic network membrane and ultra-fast solution processing. Adv Funct Mater 24(38):6005–6015

    Article  Google Scholar 

  38. Wang F, Kim H, Park S, Kee C, Kim S, Oh IK (2016) Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol 128:33–40

    Article  CAS  Google Scholar 

  39. Rasouli H, Naji L, Hosseini M-G (2017) The effect of MWCNT content on electropolymerization of PPy film and electromechanical behavior of PPy electrode-based soft actuators. J Electroanal Chem 806:136–149

    Article  CAS  Google Scholar 

  40. Yang L, Sun Z, Li F, Du S, Song W (2019) Performance enhancement of cellulose-based biocomposite ionic actuator by doping with MWCNT. Appl Phys A 125(8):547

    Article  Google Scholar 

  41. Kim S-S, Jeon J-H, Kim H-I, Kee C-D, Oh I-K (2015) High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-oxidized bacterial cellulose. Adv Func Mater 25(23):3560–3570

    Article  CAS  Google Scholar 

  42. Wang Y, Wang F, Kong Y, Wang L, Li Q (2021) Novel ionic bioartificial muscles based on ionically crosslinked multi-walled carbon nanotubes-mediated bacterial cellulose membranes and PEDOT:PSS electrodes. Smart Mater Struct 31(2):025023

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51905487), Natural Science Foundation of Zhejiang Province (LY21E050023), and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) (18022220-Y).

Funding

National Natural Science Foundation of China, 51905487, Fan Wang, Natural Science Foundation of Zhejiang Province, LY21E050023, Fan Wang

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Wang or Wei Wang.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethics declaration

The authors declare that this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1890 KB)

Supplementary file2 (MP4 9348 KB)

Supplementary file3 (DOCX 423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, L., Wu, Z. et al. A low-voltage electro-ionic soft actuator based on graphene nanoplatelets-sulfonated cellulose nanowhisker combined with microfibrillated cellulose. J Mater Sci 58, 466–477 (2023). https://doi.org/10.1007/s10853-022-08061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08061-3

Navigation