Skip to main content
Log in

High-performance supercapacitor and antifouling biosensor based on conducting polyaniline-hyaluronic acid hydrogels

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a polyaniline-hyaluronic acid (PANI-HA) hydrogel that combines rigid conducting polymer with flexible HA. The supramolecular assembly of PANI and HA via boronic acid bonds yields PANI-HA hydrogel with unique microstructure, electrical conductivity and hydrophilicity and exhibits excellent supercapacitor performance and electrochemical sensing for immunoglobulin G (IgG). The PANI-HA hydrogel electrode shows high specific capacitance (369 F g−1, with 0.5 A g−1 current density) and good cycling stability (85% capacity retention after 1000 galvanostatic charge–discharge cycles). In addition, the PANI-HA hydrogel-based electrode can also be used as an electrochemical biosensor for IgG detection, and the presence of highly hydrophilic HA supports low-fouling target analysis. The modified electrode exhibits good sensitivity, wide detection range (0.1 ng mL−1–10 μg mL−1), and a low detection limit (0.043 ng mL−1) for IgG detection. We demonstrate a strategy to fabricate supramolecular hydrogel-modified electrodes and explore their potential applications in supercapacitors and biosensors.

Graphical abstract

High-performance supercapacitor and antifouling biosensor were fabricated based on polyaniline-hyaluronic acid hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ma Z, Shi W, Yan K, Pan L, Yu G (2019) Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chem Sci 10:6232–6244. https://doi.org/10.1039/C9SC02033K

    Article  CAS  Google Scholar 

  2. Tomczykowa M, Plonska-Brzezinska ME (2019) Conducting Polymers, hydrogels and their composites: preparation, properties and bioapplications. Polymers 11:350–386. https://doi.org/10.3390/polym11020350

    Article  CAS  Google Scholar 

  3. Zeng R, Wang W, Chen M, Wan Q, Wang C, Knopp D, Tang D (2021) CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 82:105711–105738. https://doi.org/10.1016/j.nanoen.2020.105711

    Article  CAS  Google Scholar 

  4. Han X, Xiao G, Wang Y et al (2020) Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J Mater Chem A 8:23059–23095. https://doi.org/10.1039/D0TA07468C

    Article  CAS  Google Scholar 

  5. Wang Y, Ding Y, Guo X, Yu G (2019) Conductive polymers for stretchable supercapacitors. Nano Res 12:1978–1987. https://doi.org/10.1007/s12274-019-2296-9

    Article  CAS  Google Scholar 

  6. Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G (2018) Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater 30:1800124–1800131. https://doi.org/10.1002/adma.201800124

    Article  CAS  Google Scholar 

  7. Li G, Zhong P, Ye Y, Wan X, Cai Z, Yang S, Xia Y, Li Q, Liu J, He Q (2019) A highly sensitive and stable dopamine sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites. J Electrochem Soci 166:1552–1562. https://doi.org/10.1149/2.1071915jes

    Article  CAS  Google Scholar 

  8. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810. https://doi.org/10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

  9. Ren R, Cai G, Yu Z, Zeng Y, Tang D (2018) Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem 90:11099–11105. https://doi.org/10.1021/acs.analchem.8b03538

    Article  CAS  Google Scholar 

  10. Zeng R, Luo Z, Zhang L, Tang D (2018) Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem 90:12299–12306. https://doi.org/10.1021/acs.analchem.8b03889

    Article  CAS  Google Scholar 

  11. Liu N, Song J, Lu Y, Davis JJ, Gao F, Luo X (2019) Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal Chem 91:8334–8340. https://doi.org/10.1021/acs.analchem.9b01129

    Article  CAS  Google Scholar 

  12. Liu N, Hui N, Davis JJ, Luo X (2018) Low fouling protein detection in complex biological media supported by a designed multifunctional peptide. ACS Sens 3:1210–1216. https://doi.org/10.1021/acssensors.8b00318

    Article  CAS  Google Scholar 

  13. Kim C, Ahn BY, Wei T-S et al (2018) High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 12:11838–11846. https://doi.org/10.1021/acsnano.8b02744

    Article  CAS  Google Scholar 

  14. Xie J, Zhang Q (2019) Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15:1805061–1805081. https://doi.org/10.1002/smll.201805061

    Article  CAS  Google Scholar 

  15. Liu C, Tai H, Zhang P, Yuan Z, Du X, Xie G, Jiang Y (2018) A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens Actuators B 261:587–597. https://doi.org/10.1016/j.snb.2017.12.022

    Article  CAS  Google Scholar 

  16. Hou X, Zhou Y, Liu Y, Wang L, Wang J (2020) Coaxial electrospun flexible PANI//PU fibers as highly sensitive pH wearable sensor. J Mater Sci 55:16033–16047. https://doi.org/10.1007/s10853-020-05110-7

    Article  CAS  Google Scholar 

  17. Yu Z, Cai G, Liu X, Tang D (2021) Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Anal Chem 93:2916–2925. https://doi.org/10.1021/acs.analchem.0c04501

    Article  CAS  Google Scholar 

  18. Huang L, Zeng R, Tang D, Cao X (2022) Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy 99:107376–107387. https://doi.org/10.1016/j.nanoen.2022.107376

    Article  CAS  Google Scholar 

  19. Amer K, Elshaer AM, Anas M, Ebrahim S (2019) Fabrication, characterization, and electrical measurements of gas ammonia sensor based on organic field effect transistor. J Mater Sci Mater Electron 30:391–400. https://doi.org/10.1007/s10854-018-0303-7

    Article  CAS  Google Scholar 

  20. Ahamad T, Naushad M, Alzaharani Y, Alshehri SM (2020) Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: kinetics, main active species, intermediates and pathways. J Mol Liq 311:113339–113349. https://doi.org/10.1016/j.molliq.2020.113339

    Article  CAS  Google Scholar 

  21. Chen Y, Zhang Q, Jing X, Han J, Yu L (2019) Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Mater Lett 242:170–173. https://doi.org/10.1016/j.matlet.2019.01.143

    Article  CAS  Google Scholar 

  22. Liu N, Wang R, Gao S et al (2021) High-performance piezo-electrocatalytic sensing of ascorbic acid with nanostructured wurtzite zinc oxide. Adv Mater 33:2105697–2105706. https://doi.org/10.1002/adma.202105697

    Article  CAS  Google Scholar 

  23. Qiu Z, Peng Y, He D, Wang Y, Chen S (2018) Ternary Fe3O4@C@PANi nanocomposites as high-performance supercapacitor electrode materials. J Mater Sci 53:12322–12333. https://doi.org/10.1007/s10853-018-2451-9

    Article  CAS  Google Scholar 

  24. Zhao X, Gnanaseelan M, Jehnichen D, Simon F, Pionteck J (2019) Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54:10809–10824. https://doi.org/10.1007/s10853-019-03654-x

    Article  CAS  Google Scholar 

  25. Zhou K, He Y, Xu Q et al (2018) A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12:5888–5894. https://doi.org/10.1021/acsnano.8b02055

    Article  CAS  Google Scholar 

  26. Li W, Gao F, Wang X, Zhang N, Ma M (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Ed 55:9196–9201. https://doi.org/10.1002/anie.201603417

    Article  CAS  Google Scholar 

  27. Li L, Zhang Y, Lu H et al (2020) Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat Commun 11:62–74. https://doi.org/10.1038/s41467-019-13959-9

    Article  CAS  Google Scholar 

  28. Jiang X, Wang H, Yuan R, Chai Y (2018) Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H2O2 released from live cells. Anal Chem 90:8462–8469. https://doi.org/10.1021/acs.analchem.8b01168

    Article  CAS  Google Scholar 

  29. Yang L, Wang H, Lü H, Hui N (2020) Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microRNA. Anal Chim Acta 1124:104–112. https://doi.org/10.1016/j.aca.2020.05.025

    Article  CAS  Google Scholar 

  30. Huang L, Zeng R, Xu J, Tang D (2022) Point-of-care immunoassay based on a multipixel dual-channel pressure sensor array with visual sensing capability of full-color switching and reliable electrical signals. Anal Chem 94:13278–13286. https://doi.org/10.1021/acs.analchem.2c03393

    Article  CAS  Google Scholar 

  31. Liu N, Fan X, Hou H, Gao F, Luo X (2021) Electrochemical sensing interfaces based on hierarchically architectured zwitterionic peptides for ultralow fouling detection of alpha fetoprotein in serum. Anal Chim Acta 1146:17–23. https://doi.org/10.1016/j.aca.2020.12.031

    Article  CAS  Google Scholar 

  32. Liu N, Ma Y, Han R, Lv S, Wang P, Luo X (2021) Antifouling biosensors for reliable protein quantification in serum based on designed all-in-one branched peptides. Chem Commun 57:777–780. https://doi.org/10.1039/D0CC07220F

    Article  CAS  Google Scholar 

  33. Liu N, Xu Z, Morrin A, Luo X (2019) Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Anal Methods 11:702–711. https://doi.org/10.1039/C8AY02674B

    Article  Google Scholar 

  34. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ (2020) Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev 120:3852–3889. https://doi.org/10.1021/acs.chemrev.9b00739

    Article  CAS  Google Scholar 

  35. Hui N, Sun X, Niu S, Luo X (2017) PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Interfaces 9:2914–2923. https://doi.org/10.1021/acsami.6b11682

    Article  CAS  Google Scholar 

  36. Zhi Z, Su Y, Xi Y et al (2019) Correction to “Dual-functional polyethylene glycol-b-polyhexanide surface coating with in vitro and in vivo antimicrobial and antifouling activities.” J Mater Chem 11:15181–15181. https://doi.org/10.1021/acsami.9b05542

    Article  CAS  Google Scholar 

  37. Fan B, Fan Q, Cui M, Wu T, Wang J, Ma H, Wei Q (2019) Photoelectrochemical biosensor for sensitive detection of soluble CD44 based on the facile construction of a poly(ethylene glycol)/hyaluronic acid hybrid antifouling interface. ACS Appl Mater Interfaces 11:24764–24770. https://doi.org/10.1021/acsami.9b06937

    Article  CAS  Google Scholar 

  38. Parfenova LV, Galimshina ZR, Gil’fanova GU et al (2022) Hyaluronic acid bisphosphonates as antifouling antimicrobial coatings for PEO-modified titanium implants. Surf Interfaces 28:101678–101689. https://doi.org/10.1016/j.surfin.2021.101678

    Article  CAS  Google Scholar 

  39. Pan C, Chen L, Liu S, Zhang Y, Zhang C, Zhu H, Wang Y (2016) Dopamine-assisted immobilization of partially hydrolyzed poly(2-methyl-2-oxazoline) for antifouling and biocompatible coating. J Mater Sci 51:2427–2442. https://doi.org/10.1007/s10853-015-9556-1

    Article  CAS  Google Scholar 

  40. Wang C, Li Z, Chen J et al (2018) Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes. J Mater Sci 53:10499–10512. https://doi.org/10.1007/s10853-018-2288-2

    Article  CAS  Google Scholar 

  41. Xia Y, Adibnia V, Shan C et al (2019) Synergy between zwitterionic polymers and hyaluronic acid enhances antifouling performance. Langmuir 35:15535–15542. https://doi.org/10.1021/acs.langmuir.9b01876

    Article  CAS  Google Scholar 

  42. Zhang Y, Carbonell RG, Rojas OJ (2013) Bioactive cellulose nanofibrils for specific human IgG binding. Biomacromol 14:4161–4168. https://doi.org/10.1021/bm4007979

    Article  CAS  Google Scholar 

  43. Hui N, Chai F, Lin P et al (2016) Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim Acta 199:234–241. https://doi.org/10.1016/j.electacta.2016.03.115

    Article  CAS  Google Scholar 

  44. Guan Y, Zhang Y (2013) Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 42:8106–8121. https://doi.org/10.1039/C3CS60152H

    Article  CAS  Google Scholar 

  45. Wang L, Dong S, Liu Y et al (2020) Fabrication of injectable, porous hyaluronic acid hydrogel based on an in-situ bubble-forming hydrogel entrapment process. Polymers 12:1138–1153. https://doi.org/10.3390/polym12051138

    Article  CAS  Google Scholar 

  46. Ying H, Zhou J, Wang M, Su D, Ma Q, Lv G, Chen J (2019) In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C 101:487–498. https://doi.org/10.1016/j.msec.2019.03.093

    Article  CAS  Google Scholar 

  47. Lee J-E, Yamaguchi A, Ooka H, Kazami T, Miyauchi M, Kitadai N, Nakamura R (2021) In situ FTIR study of CO2 reduction on inorganic analogues of carbon monoxide dehydrogenase. Chem Commun 57:3267–3270. https://doi.org/10.1039/D0CC07318K

    Article  CAS  Google Scholar 

  48. Saleem S, Sajid MS, Hussain D, Jabeen F, Najam-ul-Haq M, Saeed A (2020) Boronic acid functionalized MOFs as HILIC material for N-linked glycopeptide enrichment. Anal Bioanal Chem 412:1509–1520. https://doi.org/10.1007/s00216-020-02427-9

    Article  CAS  Google Scholar 

  49. Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026. https://doi.org/10.1021/nn1006539

    Article  CAS  Google Scholar 

  50. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516. https://doi.org/10.1021/ma048418v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (21974075) and the Taishan Scholar Program of Shandong Province of China (ts20110829)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingshu Guo or Xiliang Luo.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest in this paper.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 575 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Ma, Y., Xu, Z. et al. High-performance supercapacitor and antifouling biosensor based on conducting polyaniline-hyaluronic acid hydrogels. J Mater Sci 58, 1171–1182 (2023). https://doi.org/10.1007/s10853-022-08048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08048-0

Navigation