Skip to main content
Log in

The effect mechanism of Si on the cementite growth behavior in Fe–Cr–C steel: first-principles calculations and experiments

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, the Si content (0–1.50 wt%) in Fe–1.5Cr–1.0C steel was systematically varied to shed light on the effect of Si on the microstructure characteristic and precipitation of cementite in steel. Results showed that the Si content in the range of 0–0.42 wt% had a positive effect on the cementite growth, while a negative effect in the range of 0.42–0.71 wt%. Besides, there was an insignificant effect on the cementite growth when the Si content was in the range of 0.71–1.50 wt%. Thus, the adjustment of Si content had a great impact on the cementite growth at the 0.29–0.71 wt% range, the regulation of cementite growth time needed special attention. In addition, the positive effect of Si on the cementite growth might be attributed to the increase in the precipitation temperature of cementite based on thermodynamic analysis. However, a stronger Si barrier around cementite was formed when Si content was higher than 0.42 wt%, which hindered the diffusion of C atoms and the cementite growth. However, the above assistance and resistance to cementite growth might be the near-equilibrium state with the increase in Si content at the 0.71–1.50 wt% range, and thus the effect of Si content was slight on cementite growth in this range. Furthermore, another interesting phenomenon was observed that the nucleation ability of cementite decreased monotonically with the increase in Si content (0–1.50 wt%). The reason for the inhibition effect of Si on the cementite nucleation was further studied by the first-principles calculations that the doping of Si reduced the interface stability at the austenite–cementite interface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Qin YM, Li XM, Lv B, Long XY, Yang ZN, Zhang FH, Li YG, You LL (2020) Effect of refined cementite on the microstructure and properties of nanostructured bainitic bearing steel. Mat Sci Eng A-Struct 797:1–9. https://doi.org/10.1016/j.msea.2020.140220

    Article  CAS  Google Scholar 

  2. Shi XJ, Zhang XX, Diao GJ, Wen ZF, Jin XS, Yan QZ (2022) isothermal heat treatment of wheel steel with high Cr and Si contents based on microstructure, mechanical properties, and wear performance. J Mater Eng Perform 31:341–352. https://doi.org/10.1007/s11665-021-06160-x

    Article  CAS  Google Scholar 

  3. Qin YM, Liu CB, Zhang CS, Wang XB, Long XY, Li YG, Yang ZN, Zhang FC (2022) Comparison on wear resistance of nanostructured bainitic bearing steel with and without residual cementite. J Iron Steel Res Int 29:339–349. https://doi.org/10.1007/s42243-021-00672-5

    Article  CAS  Google Scholar 

  4. Zheng H, Fu L, Ji X, Ding Y, Shan A (2021) Microstructural evolution and mechanical property of ultrafine-grained pearlitic steel by cold rolling: the influence of cementite morphology. Mat Sci Eng A-Struct 824:1–15. https://doi.org/10.1016/j.actamat.2021.116772

    Article  CAS  Google Scholar 

  5. Hutten E, Liang SL, Bellhouse E, Sarkar S, Lu YP, Langelier B, Zurob HS (2021) Mechanical properties and precipitation behavior of high strength hot-rolled ferritic steel containing Nb and V. J Mater Res Technol 14:2061–2070. https://doi.org/10.1016/j.jmrt.2021.07.107

    Article  CAS  Google Scholar 

  6. Babasafari Z, Pan AV, Pahlevani F, Kong C, Sahajwalla V, du Toit M, Dippenaar R (2021) Effect of silicon and partitioning temperature on the microstructure and mechanical properties of high-carbon steel in a quenching and partitioning heat treatment. J Mater Sci 56:15423–15440. https://doi.org/10.1007/s10853-021-06270-w

    Article  CAS  Google Scholar 

  7. Liu H, Wei J, Dong J, Zhou Y, Chen Y, Wu Y, Babu SD, Umoh AJ, Ke W (2021) The synergy between cementite spheroidization and Cu alloying on the corrosion resistance of ferrite-pearlite steel in acidic chloride solution. J Mater Sci Technol 84:65–75. https://doi.org/10.1016/j.jmst.2020.12.031

    Article  CAS  Google Scholar 

  8. Wang H, Li J, Zhang CL, Wang WJ, Liu YZ (2021) Effects of niobium on network carbide in high-carbon chromium bearing steel by in situ observation analysis. Ironmak Steelmak 48:234–246. https://doi.org/10.1080/03019233.2020.1744339

    Article  CAS  Google Scholar 

  9. Guan RG, Zhao ZY, Chao RZ, Liu XH, Lee CS (2014) Effects of deformation parameters on formation of pro-eutectoid cementite in hypereutectoid steels. J Cent South Univ 21:1256–1263. https://doi.org/10.1007/s11771-014-2060-y

    Article  CAS  Google Scholar 

  10. Lv ZQ, Wang B, Wang ZH, Sun SH, Fu WT (2013) Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel. Mat Sci Eng A-Struct 574:143–148. https://doi.org/10.1016/j.msea.2013.02.059

    Article  CAS  Google Scholar 

  11. Tu YY, Mao ZG, Zhang Q, Zhou XF, Fang F, Jiang JQ (2014) Atomistic interaction between silicon and manganese in pearlitic steel: combined atom probe tomography and first-principle calculations. Mater Lett 134:84–86. https://doi.org/10.1016/j.matlet.2014.07.057

    Article  CAS  Google Scholar 

  12. Wu YX, Sun WW, Gao X, Styles MJ, Hutchinson CR (2020) The effect of alloying elements on cementite coarsening during martensite tempering. Acta Mater 183:418–437. https://doi.org/10.1016/j.actamat.2019.11.040

    Article  CAS  Google Scholar 

  13. Tu YY, Huang LH, Wang XH, Zhou XF, Fang F, Jiang JQ (2016) Effect of Si and Mn interactions on the spheroidization and coarsening behavior of cementite during annealing in severe cold-drawn pearlitic steel. Metall Mater Trans A 47:254–259. https://doi.org/10.1007/s11661-015-3219-3

    Article  CAS  Google Scholar 

  14. Zhang GH, Chae JY, Kim KH, Suh DW (2013) Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass%C alloy. Mater Charact 81:56–67. https://doi.org/10.1016/j.matchar.2013.04.007

    Article  CAS  Google Scholar 

  15. Kozeschnik E, Bhadeshia HKDH (2008) Influence of silicon on cementite precipitation in steels. Mater Sci Tech-Lond 24:343–347. https://doi.org/10.1179/174328408X275973

    Article  CAS  Google Scholar 

  16. Zhao XY, Zhao XM, Dong CY, Yang Y, Han HB (2022) Effect of prior microstructures on cementite dissolution behavior during subcritical annealing of high carbon steels. Met Mater Int 28:1315–1327. https://doi.org/10.1007/s12540-021-00983-y

    Article  CAS  Google Scholar 

  17. Gang UG, Lee JC, Nam WJ (2009) Effect of prior microstructures on the behavior of cementite particles during subcritical annealing of medium carbon steels. Met Mater Int 15:719–725. https://doi.org/10.1007/s12540-009-0719-3

    Article  CAS  Google Scholar 

  18. Tian Q, Li J, Wu X, Fu J, Wang G (2020) Growth mechanism of MnS/Fe on TiN surface: first principle investigation. J Alloy Compd 844:1–11. https://doi.org/10.1016/j.jallcom.2020.155831

    Article  CAS  Google Scholar 

  19. Hu M, Fan Z, Liu JY, Zhang K, Wang Y, Yang CF (2021) Adsorption of Ag on M-doped graphene: first principle calculations. Int J Min Met Mater 28:487–494. https://doi.org/10.1007/s12613-020-1989-0

    Article  CAS  Google Scholar 

  20. Liu ZW, Wang AQ, Liu P, Xie JP (2022) The effect mechanism of Zn, Ni and Mn solute elements on the WC/Cu-based filler metal interfacial properties: first-principles calculations and experiments. J Mater Res Technol 18:2354–2362. https://doi.org/10.1016/j.jmrt.2022.03.143

    Article  CAS  Google Scholar 

  21. Morimoto M, Kawano S, Miyamoto S, Miyazaki K, Hayase S, Iikubo S (2022) Electronic structure and thermal conductance of the MASnI3/Bi2Te3 interface: a first-principles study. Sci Rep-Uk 12:1–12. https://doi.org/10.1038/s41598-021-04234-3

    Article  CAS  Google Scholar 

  22. Wang Q, Zhao ZY, Bai PK, Du WB, Liao HH, Li YX, Liang MJ, Huo PC, Zhang LZ, Tie D (2021) Effects of alloying elements X (Cr, Mn, Mo, Ni, Si) on the interface stability of TiC(001)/γ-Fe(001) in TiC/316L stainless steel composite formed by selective laser melting: first principles and experiments. Adv Compos Hybrid Ma 4:195–204. https://doi.org/10.1007/s42114-021-00212-5

    Article  CAS  Google Scholar 

  23. Ma SY, Chen QJ, Zhang WY, Wang SQ (2021) The properties of typical β/ω and β/α″ heterophase interfaces in β-Ti alloys from a first-principles insight. J Mater Sci 57:4625–4642. https://doi.org/10.1007/s10853-022-06905-6

    Article  CAS  Google Scholar 

  24. Dai FZ, Zhou Y, Sun W (2017) Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: linkage between empirical interpretation and atomistic nature. Acta Mater 127:312–318. https://doi.org/10.1016/j.actamat.2015.12.033

    Article  CAS  Google Scholar 

  25. Miyamoto G, Oh JC, Hono K, Furuhara T, Maki T (2007) Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater 55:5027–5038. https://doi.org/10.1016/j.actamat.2007.05.023

    Article  CAS  Google Scholar 

  26. Howe JM, Spanos G (1999) Atomic structure of the austenite-cementite interface of proeutectoid cementite plates. Philos Mag A 79:9–30. https://doi.org/10.1080/01418619908214271

    Article  CAS  Google Scholar 

  27. Zhang MX, Kelly PM (1998) Crystallography and morphology of Widmanstätten cementite in austenite. Acta mater 46:4617–4628

    Article  CAS  Google Scholar 

  28. Guziewski M, Coleman SP, Weinberger CR (2016) Atomistic investigation into the atomic structure and energetics of the ferrite-cementite interface: the Bagaryatskii orientation. Acta Mate 119:184–192. https://doi.org/10.1016/j.actamat.2016.08.017

    Article  CAS  Google Scholar 

  29. Borg RJ, Lai D (1970) Diffusion in α-Fe-Si alloys. J Appl Phys 41:5193–5200. https://doi.org/10.1063/1.1658644

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:169–186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. M Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  32. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774. https://doi.org/10.1021/j100203a036

    Article  CAS  Google Scholar 

  33. Han K, Smith GDW, Edmonds DV (1995) Pearlite phase transformation in Si and V Steel. Metall Mater Trans A 26:1617–1631. https://doi.org/10.1007/bf02670750

    Article  Google Scholar 

  34. Elwazri AM, Wanjara P, Yue S (2005) The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Mat Sci Eng A-Struct 404:91–98. https://doi.org/10.1016/j.msea.2005.05.051

    Article  CAS  Google Scholar 

  35. Spanos G, Kral MV (2009) The proeutectoid cementite transformation in steels. Int Mater Rev 54:19–47. https://doi.org/10.1179/174328009X392949

    Article  CAS  Google Scholar 

  36. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878. https://doi.org/10.1016/S0032-3861(02)00235-5

    Article  CAS  Google Scholar 

  37. Petrovic DS, Klancnik G, Pirnat M, Medved J (2011) Differential scanning calorimetry study of the solidification sequence of austenitic stainless steel. J Therm Anal Calorim 105:251–257. https://doi.org/10.1007/s10973-011-1375-2

    Article  CAS  Google Scholar 

  38. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494–498. https://doi.org/10.1021/ed061p494

    Article  CAS  Google Scholar 

  39. Liu W, Li JC, Zheng WT, Jiang Q (2006) NiAl(110)/Cr(110)interface: a density functional theory study. Phys Rev B 73:1–7. https://doi.org/10.1103/PhysRevB.73.205421

    Article  CAS  Google Scholar 

  40. Abdelkader HS, Faraoun HI (2011) Ab initio investigation of Al/Mo2B interfacial adhesion. Comp Mater Sci 50:880–885. https://doi.org/10.1016/j.commatsci.2010.10.025

    Article  CAS  Google Scholar 

  41. Yin D, Peng X, Yi Q, Wang Z (2010) Electronic property and bonding configuration at the TiN(111)/VN(111) interface. J Appl Phys 108:1–11. https://doi.org/10.1063/1.3466958

    Article  CAS  Google Scholar 

  42. Lu S, Hu QM, Yang R, Johansson B, Vitos L (2010) First-principles determination of the alpha-alpha ’ interfacial energy in Fe-Cr alloys. Phys Rev B 82:1–7. https://doi.org/10.1103/PhysRevB.82.195103

    Article  CAS  Google Scholar 

  43. Lee SJ, Lee YK (2012) Soon A The austenite/ɛ martensite interface: a first-principles investigation of the fcc Fe(111)/hcp Fe(0001) system. Appl Surf Sci 258:9977–9981. https://doi.org/10.1016/j.apsusc.2012.06.059

    Article  CAS  Google Scholar 

  44. Zhuo Z, Mao H, Hong X, Fu YZ (2018) Density functional theory study of Al/NbB2 heterogeneous nucleation interface. Appl Surf Sci 456:37–42. https://doi.org/10.1016/j.apsusc.2018.06.076

    Article  CAS  Google Scholar 

  45. Li J, Zhang M, Zhou Y, Chen G (2014) First-principles study of Al/A13Ti heterogeneous nucleation interface. Appl Surf Sci 307:593–600. https://doi.org/10.1016/j.apsusc.2014.04.079

    Article  CAS  Google Scholar 

  46. Jang JH, Kim IG, Bhadeshia HKDH (2009) Substitutional solution of silicon in cementite: a first-principles study. Comp Mater Sci 44:1319–1326. https://doi.org/10.1016/j.commatsci.2008.08.022

    Article  CAS  Google Scholar 

  47. Pauling L (1938) The nature of the interatomic forces in metals. Phys Rev 54:899–904. https://doi.org/10.1103/PhysRev.54.899

    Article  CAS  Google Scholar 

  48. Thibaux P, Métenier A, Xhoffer C (2007) Carbon diffusion measurement in austenite in the temperature range 500°C to 900°C. Metall Mater Trans A 38:1169–1176. https://doi.org/10.1007/s11661-007-9150-5

    Article  CAS  Google Scholar 

  49. Zhu K, Shi H, Chen H, Jung C (2018) Effect of Al on martensite tempering: comparison with Si. J Mater Sci 53:6951–6967. https://doi.org/10.1007/s10853-018-2037-6

    Article  CAS  Google Scholar 

  50. Zhu C, Xiong XY, Cerezo A, Hardwicke R, Smith GDW (2007) Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy 107:808–812. https://doi.org/10.1016/j.ultramic.2007.02.033

    Article  CAS  Google Scholar 

  51. Poirier DR, Geiger GH (2016) Fick's Law and diffusivity of materials. transport phenomena in materials processing, Springer

  52. Kim B, Celada C, Martín DS, Sourmail T, Rivera-Díaz-del-Castillo PEJ (2013) The effect of silicon on the nanoprecipitation of cementite. Acta Mater 61:6983–6992. https://doi.org/10.1016/j.actamat.2013.08.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors received financial support from the National Natural Science Foundation of China (No. 51874171), the project of Liaoning Province’s “Rejuvenating Liaoning Talents Plan” (XLYC2002064, XLYC1902092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun He or Nan lv.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., He, Z., lv, N. et al. The effect mechanism of Si on the cementite growth behavior in Fe–Cr–C steel: first-principles calculations and experiments. J Mater Sci 57, 22067–22081 (2022). https://doi.org/10.1007/s10853-022-07996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07996-x

Navigation