Skip to main content

Advertisement

Log in

Preparation of C–TiO2 photocatalyst with Ti3C2 MXene as precursor by molten salt method and its hydrogen production performance

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, Ti3C2 was completely oxidized at a high temperature (350 °C, 400 °C and 450 °C) to form a composite catalysts: TiO2 nanoparticles with fragmentary carbon supporting, using the ZnCl2 molten salt method. The generated disordered carbon forms an inseparable connection with TiO2 nanoparticles grown in situ on the surface, which reduces the recombination of photocarriers and increases the specific surface area. ZnCl2 plays an important role in delaying the oxidation rate, thus inhibiting the abnormal growth of TiO2 grain and retaining more carbon, which led to a suitable composition of the catalyst, so as to obtain a better hydrogen production performance. ZnCl2 existence might also prevent the collapse of the accordion structure during the calcination process. The hydrogen production activity of C–TiO2 photocatalyst prepared by molten salt method with 3 wt% Pt as cocatalyst is up to 2.3 mmol/g/h, about 5.4 times and 2 times of that of calcination without molten salt and pure P25, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Uribe-Toril J, Ruiz-Real JL, Milán-García J, de Pablo Valenciano J (2019) Energy, economy and environment: a worldwide research update. Energies 12(6):1120

    Article  Google Scholar 

  2. Wang ZP, Lin ZP, Shen SJ, Zhong WW, Cao SW (2021) Advances in designing heterojunction photocatalytic materials. Chinese J Catal 42(5):710–730

    Article  CAS  Google Scholar 

  3. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  5. Song H, Li CX, Lou ZR, Ye ZZ, Zhu LP (2017) Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustain Chem Eng 5(10):8982–8987

    Article  CAS  Google Scholar 

  6. Huang KL, Li CH, Li HZ, Ren GM, Wang L, Wang WT, Meng XC (2020) Photocatalytic applications of two-dimensional Ti3C2 MXenes: a review. ACS Appl Nano Mater 3(10):9581–9603

    Article  CAS  Google Scholar 

  7. Wang XJ, Zhang GZ, Yang L, Sharman E, Jiang J (2018) Material descriptors for photocatalyst/catalyst design. Wires Comput Mol Sci 8(5):e1369

    Article  Google Scholar 

  8. Zhao YX, Zhang S, Shi R, Waterhouse GIN, Tang JW, Zhang TR (2020) Two-dimensional photocatalyst design: a critical review of recent experimental and computational advances. Mater Today 34:78–91

    Article  CAS  Google Scholar 

  9. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  10. Low JX, Qiu SQ, Xu DF, Jiang CJ, Cheng B (2018) Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl Surf Sci 434:423–432

    Article  CAS  Google Scholar 

  11. Pham TD, Lee BK (2017) Novel photocatalytic activity of Cu@V co-doped TiO2/PU for CO2 reduction with H2O vapor to produce solar fuels under visible light. J Catal 345:87–95

    Article  CAS  Google Scholar 

  12. Chung KH, Jeong SM, Kim BJ, An KH, Park YK, Jung SC (2018) Enhancement of photocatalytic hydrogen production by liquid phase plasma irradiation on metal-loaded TiO2/carbon nanofiber photocatalysts. Int J Hydrogen Energy 43(24):11422–11429

    Article  CAS  Google Scholar 

  13. Zhang X, Chen YJ, Xiao YT, Zhou W, Tian GH, Fu HG (2018) Enhanced charge transfer and separation of hierarchical hydrogenated TiO2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H2 production activity. Nanoscale 10:4041–4050

    Article  CAS  Google Scholar 

  14. Yan X, Xing ZP, Cao Y, Hu MQ, Li ZZ, Wu XY, Qi Z, Yang SL et al (2017) In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed 001 facets as efficient visible-light-driven photocatalysts. Appl Catal B-Environ 219:572–579

    Article  CAS  Google Scholar 

  15. Khazaei M, Arai M, Sasaki T, Chung C-Y, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23(17):2185–2192

    Article  CAS  Google Scholar 

  16. Gao YP, Wang LB, Zhou AG, Li ZY, Chen JK, Bala H, Hu QK, Cao XX (2015) Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett 150:62–64

    Article  CAS  Google Scholar 

  17. Anasori B, Luhatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2(10):16098

    Article  CAS  Google Scholar 

  18. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y et al (2011) Cheminform abstract: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    Article  CAS  Google Scholar 

  19. Ke T, Shen SY, Rajavel K, Yang K, Lin DH (2021) In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity. J Hazard Mater 402:124066

    Article  CAS  Google Scholar 

  20. Peng C, Zhou T, Wei P, Ai H, Zhou B, Pan H, Xu WK, Jia JB, Zhang K, Wang HJ, Yu H (2022) Regulation of the rutile/anatase TiO2 phase junction in-situ grown on –OH terminated Ti3C2Tx (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chem Eng J 439:135685

    Article  CAS  Google Scholar 

  21. Xie X, Zhang N (2020) Positioning MXenes in the photocatalysis landscape: competitiveness, challenges, and future perspectives. Adv Funct Mater 30(36):2002528

    Article  CAS  Google Scholar 

  22. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 8(9):6051–6060

    Article  CAS  Google Scholar 

  23. Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu Z (2016) Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9(12):1490–1497

    Article  CAS  Google Scholar 

  24. Peng C, Wei P, Li X, Liu Y, Cao Y, Wang H, Yu H, Peng F, Zhang LY, Zhang BS, Lv K (2018) High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53:97–107

    Article  CAS  Google Scholar 

  25. Low J, Zhang L, Tong T, Shen B, Yu J (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266

    Article  CAS  Google Scholar 

  26. Peng C, Zhou T, Wei P, Yan X, Kong Y, Xu W, Wang HJ, Yu H, Jia JB, Zhang K, Pan H (2022) Steering interfacial charge kinetics: synergizing cocatalyst roles of Ti3C2Mx (MXene) and NCDs for superior photocatalytic performance over TiO2. Appl Surf Sci 599:154001

    Article  CAS  Google Scholar 

  27. Peng C, Xie X, Xu W, Zhou T, Wei P, Jia JB, Zhang K, Cao YH, Wang HJ, Peng F, Yang R, Yan XQ, Pan H, Yu H (2021) Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chem Eng J 421:128766

    Article  CAS  Google Scholar 

  28. Peng C, Zhou T, Wei P, Xu WK, Pan H, Peng F, Jia JB, Zhang K, Yu H (2021) Photocatalysis over MXene-based hybrids: synthesis, surface chemistry, and interfacial charge kinetics. Apl Mater 9(7):070703

    Article  CAS  Google Scholar 

  29. Xu WK, Li XY, Peng C, Yang GX, Cao YH, Wang HJ, Peng F, Yu H (2022) One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Appl Catal B Environ 303:120910

    Article  CAS  Google Scholar 

  30. Yin JJ, Zhan FK, Jiao TF, Wang WH, Zhang GC, Jiao JH, Jiang GY, Zhang QR et al (2020) Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Sci China Mater 63(11):2228–2238

    Article  CAS  Google Scholar 

  31. Jia GR, Wang Y, Cui XQ, Zheng WT (2018) Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain Chem Eng 6(10):13480–13486

    Article  CAS  Google Scholar 

  32. Yuan WY, Cheng LF, Zhang YN, Wu H, Lv SL, Chai LY, Guo XH, Zheng LX (2017) Hydrogen evolution: 2D-Layered carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfaces 4(20):1700577

    Article  Google Scholar 

  33. Naguib M, Mashtalir O, Lukatskaya MR, Dyatkin B, Zhang CF, Presser V, Gogotsi Y, Barsoum MW et al (2014) One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun 50(56):7420–7423

    Article  CAS  Google Scholar 

  34. Ding XH, Li YC, Li CH, Wang WT, Wang L, Feng LJ, Han DZ (2019) 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity. J Mater Sci 54:9385–9396. https://doi.org/10.1007/s10853-018-03289-4

    Article  CAS  Google Scholar 

  35. Wang S, Zhao L, Bai LN, Yan JM, Jiang Q, Lian JS (2014) Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles. J Mater Chem A 2(20):7439–7445

    Article  CAS  Google Scholar 

  36. Yang CW, Zhang XY, Qin JQ, Shen X, Yu RC, Ma MZ, Liu RP (2017) Porous carbon-doped TiO2 on TiC nanostructures for enhanced photocatalytic hydrogen production under visible light. J Catal 347:36–44

    Article  CAS  Google Scholar 

  37. Yoon KH, Cho YS, Kang DH (1998) Review molten salt Synthesis of lead-based relaxors. Mater Sci 33(12):2977–2984

    Article  CAS  Google Scholar 

  38. Ma TY, Cao JL, Jaroniec M, Qiao SZ (2016) Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem Int Ed 128(3):1150–1154

    Article  Google Scholar 

  39. Ušáková M, Lukáč J, Dosoudil R, Jančárik V, Grusková A, Ušák E, Sláma J, Šubrt J (2007) Influence of Cu2+ ions on structural and magnetic properties of NiZn ferrites. J Mater Sci Mater Electron 18(12):1183–1189

    Article  Google Scholar 

  40. Hu XL, Lu SC, Tian J, Wei N, Song XJ, Wang XZ, Cui HZ (2018) The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl Catal B Environ 241:329–337

    Article  Google Scholar 

  41. Li YJ, Yin ZH, Ji GR, Liang ZQ, Xue YJ, Guo YC, Tian J, Wang XZ et al (2019) 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl Catal B Environ 246:12–20

    Article  CAS  Google Scholar 

  42. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644

    Article  CAS  Google Scholar 

  43. Peng J, Chen XZ, Ong WJ, Zhao XJ, Li N (2019) Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5(1):18–50

    Article  CAS  Google Scholar 

  44. Lukowski MA, Daniel AS, Fei M, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277

    Article  CAS  Google Scholar 

  45. Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22(30):3317–3321

    Article  CAS  Google Scholar 

  46. Ren WJ, Ai ZH, Jia FL, Zhang LZ, Fan XX, Zou ZG (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144

    Article  CAS  Google Scholar 

  47. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91(1):355–361

    Article  CAS  Google Scholar 

  48. Ran JR, Gao GP, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907

    Article  CAS  Google Scholar 

  49. Yang HR, Tian J, Bo YY, Zhou YL, Wang XZ, Cui HZ (2017) Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles. Colloid Interface 487:258–265

    Article  CAS  Google Scholar 

  50. Wang YB, Zhang YN, Zhao GH, Tian HY, Shi HJ, Zhou TC (2012) Design of a novel CuO/TiO/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Appl Mater Interfaces 4(8):3965–3972

    Article  CAS  Google Scholar 

  51. Yang CW, Qin JQ, Xue Z, Ma MZ, Zhang XY, Liu RP (2017) Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability. Nano Energy 41:1–9

    Article  Google Scholar 

  52. Xiao TT, Tang Z, Yang Y, Tang L, Zhou Y, Zou ZG (2018) In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl Catal B Environ 220:417–428

    Article  CAS  Google Scholar 

  53. Cui DD, Wang L, Xu K, Ren L, Wang L, Yu YX, Du Y, Hao WC (2018) Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J Mater Chem A 6:2193–2199

    Article  CAS  Google Scholar 

  54. Cui YJ, Zhang GG, Lin ZZ, Wang XC (2016) Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl Catal B Environ 181:413–419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 22178077) and Heilongjiang Provincial Natural Science Foundation of China (No. LH2020B013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Dong or Fengming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Yan, M., Zhuang, Y. et al. Preparation of C–TiO2 photocatalyst with Ti3C2 MXene as precursor by molten salt method and its hydrogen production performance. J Mater Sci 58, 302–316 (2023). https://doi.org/10.1007/s10853-022-07991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07991-2

Navigation