Skip to main content
Log in

Multiphase field simulation of dynamic recrystallization during friction stir welding of AZ31 magnesium alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

During friction stir welding (FSW) of AZ31 magnesium alloy, dynamic recrystallization (DRX) takes place and enables fine equiaxed grains to be formed in the weld nugget zone (WNZ), which significantly affects the microstructure and properties of the weld joints. In this study, the multiphase field method was employed to analyze the DRX process in AZ31 FSW. The coupled Eulerian–Lagrangian model was first established to obtain the transient variation of temperature and strain rate at a checking point located in the WNZ center, which was then used as the input variables of DRX simulation. The multiphase field model including dislocation density was used to simulate the DRX behavior driven by both thermal and mechanical factors. It was found that the whole DRX process in AZ31 FSW consists of four stages, at each of which the dislocation density, grain boundary mobility and nucleation rate are varied at each stage, so that the DRX features are different. The calculated results of the final grain structure are in good agreement with the experimentally measured ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scripta Mater 128:107–112

    Article  CAS  Google Scholar 

  2. Song JF, She J, Chen DL, Pan FS (2017) Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloys 8:1–41

    Article  Google Scholar 

  3. Ma ZY, Qiao S, Ni DR, Xiao BL (2018) Friction stir welding of magnesium alloys: a review. Acta Metall Sin 54(11):1597–1617

    CAS  Google Scholar 

  4. Mironov S, Onuma T, Sato YS, Kokawa H (2015) Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 100:301–312

    Article  CAS  Google Scholar 

  5. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78

    Article  Google Scholar 

  6. Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Article  CAS  Google Scholar 

  7. Fonda RW, Bingert JF, Colligan KJ (2004) Development of grain structure during friction stir welding. Scripta Mater 51(3):243–248

    Article  CAS  Google Scholar 

  8. Prangnell PB, Heason CP (2005) Grain structure formation during friction stir welding observed by the ‘stop action technique.’ Acta Mater 53(11):3179–3192

    Article  CAS  Google Scholar 

  9. Yu PF, Wu CS, Shi L (2021) Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater 207:116692

    Article  CAS  Google Scholar 

  10. Prosgolitis CG, Lambrakos SG, Zervaki AD (2018) Phase-field modeling of nugget zone for a AZ31-Mg-alloy friction stir weld. J Mater Eng Perform 27(10):5102–5113

    Article  CAS  Google Scholar 

  11. Song KJ, Dong ZB, Fang K, Zhan XH, Wei YH (2014) Cellular automaton modelling of dynamic recrystallisation microstructure evolution during friction stir welding of titanium alloy. Mater Sci Technol Lond 30(6):700–711

    Article  CAS  Google Scholar 

  12. Shojaeefard MH, Akbari M, Khalkhali A, Asadi P, Parivar AH (2014) Optimization of microstructural and mechanical properties of friction stir welding using the cellular automaton and Taguchi method. Mater Des 64:660–666

    Article  CAS  Google Scholar 

  13. Morhac M, Morhacova E (2000) Monte Carlo simulation algorithms of grain growth in polycrystalline materials. Cryst Res Technol 35(1):117–128

    Article  CAS  Google Scholar 

  14. Grujicic M, Ramaswami S, Snipes JS, Avuthu V, Galgalikar R, Zhang Z (2015) Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method. J Mater Eng Perform 24(9):3471–3486

    Article  CAS  Google Scholar 

  15. Fan D, Chen LQ (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45(2):611–622

    Article  CAS  Google Scholar 

  16. Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz GJ, Rezende JLL (1996) A phase field concept for multiphase systems. Physica D 94(3):135–147

    Article  Google Scholar 

  17. Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Physica D 134(4):385–393

    Article  Google Scholar 

  18. Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y (2008) Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization. Mater Trans 49(11):2559–2565

    Article  CAS  Google Scholar 

  19. Takaki T, Hisakuni Y, Hirouchi T, Yamanaka A, Tomita Y (2009) Multi-phase-field simulations for dynamic recrystallization. Comput Mater Sci 45(4):881–888

    Article  CAS  Google Scholar 

  20. Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29(11):1865–1875

    Article  CAS  Google Scholar 

  21. Yang CL, Wu CS, Shi L (2020) Phase-field modelling of dynamic recrystallization process during friction stir welding of aluminium alloys. Sci Technol Weld Join 25(4):345–358

    Article  CAS  Google Scholar 

  22. Yoshimoto C, Takaki T (2014) Multiscale hot-working simulations using multi-phase-field and finite element dynamic recrystallization model. ISIJ Int 54(2):452–459

    Article  CAS  Google Scholar 

  23. Shokri V, Sadeghi A, Sadeghi MH (2018) Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint. J Manuf Process 31:46–55

    Article  Google Scholar 

  24. Geng P, Ma Y, Ma N, Ma H, Aoki Y, Liu H, Fujii H, Chen C (2022) Effects of rotation tool-induced heat and material flow behaviour on friction stir lapped Al/steel joint formation and resultant microstructure. Int J Mach Tool Manuf 174:103858

    Article  Google Scholar 

  25. Hammelmüller F, Zehetner C (2015) Increasing numerical efficiency in coupled Eulerian–Lagrangian metal forming simulations. In: COMPLAS XIII: proceedings of the XIII international conference on computational plasticity: fundamentals and applications, CIMNE, pp 727–733

  26. Li XB, Zhang ZM (2011) Study on metal flowing law for isothermal extrusion deformation of AZ31 magnesium alloy. In: Advanced materials research, vol 314. Trans Tech Publications Ltd, pp 448–451

  27. Abbassi F, Srinivasan M, Loganathan C, Narayanasamy R, Gupta M (2016) Experimental and numerical analyses of magnesium alloy hot workability. J Magnes Alloys 4(4):295–301

    Article  CAS  Google Scholar 

  28. Feng F, Huang S, Meng Z, Hu JH, Lei Y, Zhou MC, Yang ZZ (2014) A constitutive and fracture model for AZ31B magnesium alloy in the tensile state. Mater Sci Eng A Struct 594:334–343

    Article  CAS  Google Scholar 

  29. Laasraoui A, Jonas JJ (1991) Prediction of steel flow stresses at high temperatures and strain rates. Mech Res Commun 22:1545–1558

    Google Scholar 

  30. Liu X, Li L, He F, Zhou J, Zhu B, Zhang L (2013) Simulation on dynamic recrystallization behavior of AZ31 magnesium alloy using cellular automaton method coupling Laasraoui–Jonas model. Trans Nonferrous Met Soc 23(9):2692–2699

    Article  CAS  Google Scholar 

  31. Krill Iii CE, Chen LQ (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50(12):3059–3075

    Article  Google Scholar 

  32. Vedantam S, Patnaik BSV (2006) Efficient numerical algorithm for multiphase field simulations. Phys Rev E 73(1):016703

    Article  Google Scholar 

  33. Gruber J, Ma N, Wang Y, Rollett AD, Rohrer GS (2006) Sparse data structure and algorithm for the phase field method. Model Simul Mater Sci 14(7):1189

    Article  Google Scholar 

  34. Kim SG, Kim DI, Kim WT, Park YB (2006) Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys Rev E 74(6):061605

    Article  Google Scholar 

  35. Wang M, Zong BY, Wang G (2009) Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation. Comput Mater Sci 45(2):217–222

    Article  CAS  Google Scholar 

  36. Yoo MH, Morris JR, Ho KM, Agnew SR (2002) Nonbasal deformation modes of HCP metals and alloys: role of dislocation source and mobility. Metall Mater Trans A 33(3):813–822

    Article  Google Scholar 

  37. Heidarzadeh A, Mohammadzadeh R, Jafarian HR, Pruncu CI, Simar A (2022) Role of geometrically necessary dislocations on mechanical properties of friction stir welded single-phase copper with medium stacking fault energy. J Mater Res Technol 16:194–200

    Article  CAS  Google Scholar 

  38. Ma X, Huang C, Moering J, Ruppert M, Höppel HW, Göken M, Narayan J, Zhu Y (2016) Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater 116:43–52

    Article  CAS  Google Scholar 

  39. Kubin LP, Mortensen A (2003) Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr Mater 48(2):119–125

    Article  CAS  Google Scholar 

  40. Zhao YQ, You J, Qin J, Qin JC, Dong CL, Liu L, Liu Z, Miao S (2022) Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Mater Sci Eng A Struct 837:142754

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 52035005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanSong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Wu, C. & Shi, L. Multiphase field simulation of dynamic recrystallization during friction stir welding of AZ31 magnesium alloy. J Mater Sci 57, 20764–20779 (2022). https://doi.org/10.1007/s10853-022-07891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07891-5

Navigation