Skip to main content
Log in

Solar water splitting with nanostructured hematite: the role of oxygen vacancy

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface defect engineering has shown to be an effective way to prepare cheap and efficient photoanode. In this study, oxygen vacancies are introduced to the hematite photoanode by a stepped atmosphere calcination with varied duration. The property of oxygen vacancies is verified by XRD, TEM, XPS and EPR analysis. With this facile treatment, the solar water splitting performance has been investigated. The enhanced photocurrent is about 1.96 mA cm−2 at 1.23 VRHE for the photoanode after 1.5 h calcination, which can keep constant even after 10 h illumination. Further study reveals that the maximum IPCE value of the photoanode reaches 56.5%. The creation of oxygen vacancies can lower the corresponding band gap for about 0.1 eV, which enhances the light absorption performance at the wavelength range from 750 to 620 nm. This photoanode displays the shortest charge transfer duration about 0.919 ms and the highest DC photocurrent about 597.13 × 10–8 mA cm−2 based on IMPS measurement. The electronic property and interfacial resistance of the photoanode are also characterized by Mott–Schottky and EIS measurement. The corresponding detailed mechanism is discussed in this paper.

Graphical abstract

Schematic diagram and summary of the mechanism of oxygen vacancies introduced to the surface of α-Fe2O3 photoanode during solar water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  2. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909

    Article  CAS  Google Scholar 

  3. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  CAS  Google Scholar 

  4. Nguyen M-T, Piccinin S, Seriani N, Gebauer R (2015) Photo-oxidation of water on defective Hematite(0001). ACS Catal 5:715–721

    Article  CAS  Google Scholar 

  5. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using Hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4:432–449

    Article  CAS  Google Scholar 

  6. Chen Z, Jaramillo TF, Deutsch TG et al (2010) Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25:3–16

    Article  Google Scholar 

  7. Tamirat AG, Rick J, Dubale AA, Su WN, Hwang BJ (2016) Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons 1:243–267

    Article  CAS  Google Scholar 

  8. Sivula K, Zboril R, Le Formal F et al (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444

    Article  CAS  Google Scholar 

  9. Shen S, Lindley SA, Chen X, Zhang JZ (2016) Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ Sci 9:2744–2775

    Article  CAS  Google Scholar 

  10. Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A 498:126–141

    Article  CAS  Google Scholar 

  11. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-Induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–6408

    Article  CAS  Google Scholar 

  12. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 134:4294–4302

    Article  CAS  Google Scholar 

  13. Kment S, Riboni F, Pausova S et al (2017) Photoanodes based on TiO2 and alpha-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769

    Article  CAS  Google Scholar 

  14. Zhong DK, Cornuz M, Sivula K, Graetzel M, Gamelin DR (2011) Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4:1759–1764

    Article  CAS  Google Scholar 

  15. Yu X, Liu J, Yin W et al (2019) Ultrathin NiMn-layered double hydroxide nanosheets coupled with α-Fe2O3 nanorod arrays for photoelectrochemical water splitting. Appl Surf Sci 492:264–271

    Article  CAS  Google Scholar 

  16. Zandi O, Klahr BM, Hamann TW (2013) Highly photoactive Ti-doped alpha-Fe2O3 thin film electrodes: resurrection of the dead layer. Energy Environ Sci 6:634–642

    Article  CAS  Google Scholar 

  17. Luo ZB, Li CC, Zhang D, Wang T, Gong JL (2016) Highly-oriented Fe2O3/ZnFe2O4 nanocolumnar heterojunction with improved charge separation for photoelectrochemical water oxidation. Chem Commun 52:9013–9015

    Article  CAS  Google Scholar 

  18. Youn DH, Park YB, Kim JY, Magesh G, Jang YJ, Lee JS (2015) One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J Power Sour 294:437–443

    Article  CAS  Google Scholar 

  19. Tilley SD, Cornuz M, Sivula K, Gratzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem-Int Edit 49:6405–6408

    Article  CAS  Google Scholar 

  20. Mohapatra SK, John SE, Banerjee S, Misra M (2009) Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem Mater 21:3048–3055

    Article  CAS  Google Scholar 

  21. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Sn-Doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125

    Article  CAS  Google Scholar 

  22. Zhang P, Wang T, Chang X, Zhang L, Gong J (2016) Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew Chem 55:5851–5855

    Article  CAS  Google Scholar 

  23. Wang L, Jo M-J, Katagiri R et al (2018) Antioxidant effects of citrus pomace extracts processed by super-heated steam. LWT 90:331–338

    Article  CAS  Google Scholar 

  24. Luo Z, Li C, Liu S, Wang T, Gong J (2017) Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci 8:91–100

    Article  CAS  Google Scholar 

  25. Hao L, Huang H, Zhang Y, Ma T (2021) Oxygen vacant semiconductor photocatalysts. Adv Func Mater 31:2100919

    Article  CAS  Google Scholar 

  26. Zhuang G, Chen Y, Zhuang Z, Yu Y, Yu J (2020) Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Sci China Mater 63:2089–2118

    Article  CAS  Google Scholar 

  27. Xiao YM, Wu JH, Cheng CX et al (2012) Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells. Chin Sci Bull 57:2329–2334

    Article  CAS  Google Scholar 

  28. Li M, Deng JJ, Pu AW et al (2014) Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation. J Mater Chem A 2:6727–6733

    Article  CAS  Google Scholar 

  29. Feng C, Fu S, Wang W, Zhang Y, Bi Y (2019) High-crystalline and high-aspect-ratio hematite nanotube photoanode for efficient solar water splitting. Appl Catal B 257:117900

    Article  CAS  Google Scholar 

  30. Zhu CQ, Li CL, Zheng MJ, Delaunay JJ (2015) Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl Mater Interfaces 7:22355–22363

    Article  CAS  Google Scholar 

  31. Wang H, Zhang W, Li X et al (2018) Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl Catal B 225:218–227

    Article  CAS  Google Scholar 

  32. Yu H, Li J, Zhang Y et al (2019) Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for Robust CO2 photoreduction. Angew Chem Int Ed Engl 58:3880–3884

    Article  CAS  Google Scholar 

  33. Wang ZL, Mao X, Chen P et al (2019) Understanding the roles of oxygen vacancies in Hematite-based photoelectrochemical processes. Angew Chem-Int Edit 58:1030–1034

    Article  CAS  Google Scholar 

  34. van de Krol R (2012) in van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production. Springer US, Boston, MA

  35. Qiu P, Yang H, Yang L, Wang Q, Ge L (2018) Solar water splitting with nanostructured hematite: the role of annealing-temperature. Electrochim Acta 266:431–440

    Article  CAS  Google Scholar 

  36. Kim HS, Cook JB, Lin H et al (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460

    Article  CAS  Google Scholar 

  37. Liu Y, Wang W, Xu X, Marcel Veder J-P, Shao Z (2019) Recent advances in anion-doped metal oxides for catalytic applications. J Mater Chem A 7:7280–7300

    Article  CAS  Google Scholar 

  38. Sarkar A, Khan GG (2019) The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 11:3414–3444

    Article  CAS  Google Scholar 

  39. Zhu Y, Liu X, Jin S et al (2019) Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J Mater Chem A 7:5875–5897

    Article  CAS  Google Scholar 

  40. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  41. Zhang Y, Yuan S-Y, Zou Y, Li T-T, Liu H, Wang J-J (2022) Enhanced charge separation and conductivity of hematite enabled by versatile NiSe2 nanoparticles for improved photoelectrochemical water oxidation. Appl Mater Today 28:101552

  42. Peter LM, Ponomarev EA, Franco G, Shaw NJ (1999) Aspects of the photoelectrochemistry of nanocrystalline systems. Electrochim Acta 45:549–560

    Article  CAS  Google Scholar 

  43. Ding C, Wang Z, Shi J et al (2016) Substrate-electrode interface engineering by an electron-transport layer in hematite photoanode. ACS Appl Mater Interfaces 8:7086–7091

  44. Pu AW, Deng JJ, Hao YY, Sun XH, Zhong J (2014) Thickness effect of hematite nanostructures prepared by hydrothermal method for solar water splitting. Appl Surf Sci 320:213–217

    Article  CAS  Google Scholar 

  45. Kennedy JH, Flatband KWF Jr (1978) Potentials and donor densities of polycrystalline α‐Fe2O3 determined from Mott‐Schottky plots. J Electrochem Soc 125:723–726

  46. Sharma P, Jang JW, Lee JS (2019) Key strategies to advance the photoelectrochemical water splitting performance of alpha-Fe2O3 photoanode. ChemCatChem 11:157–179

    Article  CAS  Google Scholar 

  47. Ma YM, Pendlebury SR, Reynal A, Le Formal F, Durrant JR (2014) Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem Sci 5:2964–2973

    Article  CAS  Google Scholar 

  48. Liao CH, Lee PM, Lin CH et al (2019) Experiment and theoretical calculation of the surface space charge region effect on photocurrent generation of SnO2 bilayer photodiode devices. Adv Electr Mater 5:6

    Google Scholar 

  49. Lan H, Xia Y, Feng K, Wei A, Kang Z, Zhong J (2019) Co-doped carbon layer to lower the onset potential of hematite for solar water oxidation. Appl Catal B 258:117962

    Article  CAS  Google Scholar 

  50. Khataee A, Azevedo J, Dias P et al (2019) Integrated design of hematite and dye-sensitized solar cell for unbiased solar charging of an organic-inorganic redox flow battery. Nano Energy 62:832–843

    Article  CAS  Google Scholar 

  51. Franking R, Li LS, Lukowski MA et al (2013) Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ Sci 6:500–512

    Article  CAS  Google Scholar 

  52. Wachs IE, Roberts CA (2010) Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev 39:5002–5017

    Article  CAS  Google Scholar 

  53. Cesar I, Sivula K, Kay A, Zboril R, Grätzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. The J Phys Chem C 113:772–782

    Article  CAS  Google Scholar 

  54. Hedenstedt K, Bäckström J, Ahlberg E (2017) In-situ raman spectroscopy of α- and γ-FeOOH during cathodic load. J Electrochem Soc 164:H621–H627

    Article  CAS  Google Scholar 

  55. Fernández-Climent R, Giménez S, García-Tecedor M (2020) The role of oxygen vacancies in water splitting photoanodes. Sustain Energy Fuels 4:5916–5926

    Article  Google Scholar 

  56. Hu J, Zhao X, Chen W, Chen Z (2018) Enhanced charge transport and increased active sites on alpha-Fe2O3 (110) nanorod surface containing oxygen vacancies for improved solar water oxidation performance. ACS Omega 3:14973–14980

    Article  CAS  Google Scholar 

  57. Ding J, Dai Z, Qin F, Zhao H, Zhao S, Chen R (2017) Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl Catal B 205:281–291

    Article  CAS  Google Scholar 

  58. Geng Z, Kong X, Chen W et al (2018) Oxygen vacancies in ZnO nanosheets enhance CO electrochemical reduction to CO. Angew Chem Int Ed 57:6054–6059

    Article  CAS  Google Scholar 

  59. Bao J, Zhang X, Fan B et al (2015) Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed Engl 54:7399–7404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [Grant No. 52071335] and the funding of China University of Petroleum (Beijing) [Grant No. 2462015YQ0602]. We are also grateful to the reviewers for the helpful comments. We also thank Prof. Steven Baldelli (University of Houston) for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Qiu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to this article.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29835 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, H., Gong, D. et al. Solar water splitting with nanostructured hematite: the role of oxygen vacancy. J Mater Sci 57, 19716–19729 (2022). https://doi.org/10.1007/s10853-022-07885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07885-3

Navigation