Skip to main content

Advertisement

Log in

Zinc-ion hybrid supercapacitor with extraordinary shape memory and high performance from nano-architectured polyaniline on NiTi alloy wire

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible linear aqueous zinc-ion hybrid supercapacitors are considered as ideal materials for flexible and wearable electronic devices due to their advantages of safety, high flexibility and good wearable ability. Materials based on shape memory can satisfy the needs of fatigue resistance and deformation recovery, and have great advantages in the assembly of flexible wearable devices. In this paper, aqueous zinc-ion hybrid supercapacitor with shape-memory function was assembled by using PANI/NiTi shape-memory alloy wire as the cathode electrode and flexible zinc wire as the anode electrode. The device can be bent into different angles from 0° to 180°, after repeated bending for 200 times and heating to its deformation temperature, the original shape can still be restored, and the capacitance retention rate is up to 90%, with good mechanical resistance. By assembling with flexible zinc wire, the potential window can be expanded to 1.6 V, and the energy density has been greatly improved. Its energy density can reach 55.9 Wh kg−1 at 3 A g−1, which greatly improves its energy density and has great development potential in flexible and portable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhu Q, Zhao D, Cheng M, Zhou J, Owusu KA, Mai L, Yu Y (2019) A new view of supercapacitors: integrated supercapacitors. Adv Energy Mater 9:1901081. https://doi.org/10.1002/aenm.201901081

    Article  CAS  Google Scholar 

  2. Liu T, Yan R, Huang H, Pan L, Cao X, DeMello A, Niederberger M (2020) A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv Funct Mater 30:2004410. https://doi.org/10.1002/adfm.202004410

    Article  CAS  Google Scholar 

  3. Cao J, Zhao Y, Xu Y, Zhang Y, Zhang B, Peng H (2018) Sticky-note supercapacitors. J Mater Chem A 6:3355–3360. https://doi.org/10.1039/c7ta10756k

    Article  CAS  Google Scholar 

  4. Wu X, Huang B, Wang Q, Wang Y (2019) Wide potential and high energy density for an asymmetric aqueous supercapacitor. J Mater Chem A 7:19017–19025. https://doi.org/10.1039/c9ta06428a

    Article  CAS  Google Scholar 

  5. Xu Y, Liu Q, You H, Zang L, Xiao Y, Wang X, Yang C (2021) A facile patterning preparation of barnacle-like polypyrrole on sandpaper for flflexible electronics. J Mater Sci 56:18162–18173. https://doi.org/10.1007/s10853-021-06515-8

    Article  CAS  Google Scholar 

  6. Liu Q, Qiu J, Yang C, Zang L, Zhang G, Sakai E (2020) High-performance PVA/PEDOT: PSS hydrogel electrode for all-gel-State flexible supercapacitors. Adv Mater Technol 6:2000919. https://doi.org/10.1002/admt.202000919

    Article  CAS  Google Scholar 

  7. Manjakkal L, Navaraj WT, Núñez CG, Dahiya R (2019) Graphene-graphite polyurethane composite based high-energy density flexible supercapacitors. Adv Sci 6:1802251. https://doi.org/10.1002/advs.201802251

    Article  CAS  Google Scholar 

  8. Li Y, Chen C (2017) Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. J Mater Sci 52:12348–12357. https://doi.org/10.1007/s10853-017-1291-3

    Article  CAS  Google Scholar 

  9. Chen J, Liu Y, Li W, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. https://doi.org/10.1007/s10853-015-9092-z

    Article  CAS  Google Scholar 

  10. Huang H, Abbas SC, Deng Q, Ni Y, Cao S, Ma X (2021) An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers. J Power Sources 498:229886. https://doi.org/10.1016/j.jpowsour.2021.229886

    Article  CAS  Google Scholar 

  11. Wang C, Zeng X, Cullen PJ, Pei Z (2021) The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. J Mater Chem A 9:19054–19082. https://doi.org/10.1039/d1ta02775a

    Article  CAS  Google Scholar 

  12. Jian Z, Yang N, Vogel M, Leith S, Schulte A, Schönherr H, Jiao T, Zhang W, Müller J, Butz B, Jiang X (2020) Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv Energy Mater 10:2002202. https://doi.org/10.1002/aenm.202002202

    Article  CAS  Google Scholar 

  13. He H, Lian J, Chen C, Xiong Q, Zhang M (2021) Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem Eng J 421:129786. https://doi.org/10.1016/j.cej.2021.129786

    Article  CAS  Google Scholar 

  14. Pu J, Cao Q, Gao Y, Yang J, Cai D, Chen X, Tang X, Fu G, Pan Z, Guan C (2021) Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. J Mater Chem A 9:17292–17299. https://doi.org/10.1039/d1ta05617d

    Article  CAS  Google Scholar 

  15. Li T, Fang X, Pang Q, Huang W, Sun J (2019) Healable and shape editable supercapacitors based on shape memory polyurethanes. J Mater Chem A 7:17456–17465. https://doi.org/10.1039/c9ta04673a

    Article  CAS  Google Scholar 

  16. Song C, Yun J, Lee H, Park H, Jeong YR, Lee G, Kim MS, Ha JS (2019) A shape memory high-voltage supercapacitor with aymmetric organic electrolytes for driving an integrated NO2 gas sensor. Adv Funct Mater 29:1901996. https://doi.org/10.1002/adfm.201901996

    Article  CAS  Google Scholar 

  17. Zhong J, Meng J, Yang Z, Poulin P, Koratkar N (2015) Shape memory fiber supercapacitors. Nano Energy 17:330–338. https://doi.org/10.1016/j.nanoen.2015.08.024

    Article  CAS  Google Scholar 

  18. Deng J, Zhang Y, Zhao Y, Chen P, Cheng X, Peng H (2015) A shape-memory supercapacitor fiber. Angew Chem Int Ed 54:15419–15423. https://doi.org/10.1002/anie.201508293

    Article  CAS  Google Scholar 

  19. Song P, Tao J, He X, Sun Y, Shen X, Zhai L, Yuan A, Zhang D, Ji Z, Li B (2020) Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics. Chem Eng J 386:124024. https://doi.org/10.1016/j.cej.2020.124024

    Article  CAS  Google Scholar 

  20. Ji Y, Xie J, Wu J, Yang Y, Fu XZ, Sun R, Wong CP (2018) Hierarchical nanothorns MnCo2O4 grown on porous/dense Ni bi-layers coated Cu wire current collectors for high performance flexible solid-state fiber supercapacitors. J Power Sources 393:54–61. https://doi.org/10.1016/j.jpowsour.2018.04.109

    Article  CAS  Google Scholar 

  21. Yin Q, Li D, Zhang J, Zhao Y, Luo J, Shao M, Han J (2020) An all-solid-state fiber-type supercapacitor based on hierarchical Ni/NiO@CoNi-layered double hydroxide core-shell nanoarrays. J Alloys Compd 813:152187. https://doi.org/10.1016/j.jallcom.2019.152187

    Article  CAS  Google Scholar 

  22. Naderi L, Shahrokhian S (2019) Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. J Colloid Interface Sci 542:325–338. https://doi.org/10.1016/j.jcis.2019.02.019

    Article  CAS  Google Scholar 

  23. Liu L, Shen B, Jiang D, Guo R, Kong L, Yan X (2016) Watchband-like supercapacitors with body temperature inducible shape memory ability. Adv Energy Mater 6:1600763. https://doi.org/10.1002/aenm.201600763

    Article  CAS  Google Scholar 

  24. Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L (2017) Recoverable wire-shaped supercapacitors with ultrahigh volumetric energy density for multifunctional portable and wearable electronics. ACS Appl Mater Interfaces 9:17052–17060. https://doi.org/10.1021/acsami.7b02478

    Article  CAS  Google Scholar 

  25. Huang Y, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2015) A shape memory supercapacitor and its application in smart energy storage textiles. J Mater Chem A 4:1290–1297. https://doi.org/10.1039/c5ta09473a

    Article  Google Scholar 

  26. Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57:911–946. https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  CAS  Google Scholar 

  27. Hao S, Cui L, Jiang J, Guo F, Xiao X, Jiang D, Yu C, Chen Z, Zhou H, Wang Y, Liu Y, Brown DE, Ren Y (2014) A novel multifunctional NiTi/Ag hierarchical composite. Sci Rep 4:5267. https://doi.org/10.1038/srep05267

    Article  CAS  Google Scholar 

  28. Tabrizi AG, Arsalani N, Mohammadi A, Ghadimi LS, Ahadzadeh I, Namazi H (2018) A new route for the synthesis of polyaniline nanoarrays on graphene oxide for high-performance supercapacitors. Electrochim Acta 265:379–390. https://doi.org/10.1016/j.electacta.2018.01.166

    Article  CAS  Google Scholar 

  29. Du P, Dong Y, Kang H, Yang X, Wang Q, Niu J, Wang S, Liu P (2018) Graphene-wrapped polyaniline nanowire array modified functionalized of carbon cloth for high-performance flexible solid-state supercapacitor. ACS Sustain Chem Eng 6:14723–14733. https://doi.org/10.1021/acssuschemeng.8b03278

    Article  CAS  Google Scholar 

  30. Wu D, Zhong W (2019) A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. J Mater Chem A 7:5819–5830. https://doi.org/10.1039/c8ta11153g

    Article  CAS  Google Scholar 

  31. Zhao Z, Liu Q, Zang L, You H, Zhang J, Wang X, Yang C (2021) In situ growth of submicron polypyrrole on NiTi alloy wire as electrodes for recoverable and flexible quasi-solid-state supercapacitors. J Alloys Compd 888:161646. https://doi.org/10.1016/j.jallcom.2021.161646

    Article  CAS  Google Scholar 

  32. Su W, Wu F, Fang L, Hu J, Liu L, Guan T, Long X, Luo H, Zhou M (2019) NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode. J Alloys Compd 799:15–25. https://doi.org/10.1016/j.jallcom.2019.05.305

    Article  CAS  Google Scholar 

  33. Fu X, Zhang W, Lan B, Wen J, Zhang S, Luo P, Zhang R, Hu S, Liu Q (2020) Polyaniline nanorod arrays as a cathode material for high-rate zinc-ion batteries. ACS Appl Energy Mater 3:12360–12367. https://doi.org/10.1021/acsaem.0c02373

    Article  CAS  Google Scholar 

  34. Boruah BD, Wen B, Nagane S, Zhang X, Stranks SD, Boies A, De Volder M (2020) Photo-rechargeable zinc-ion Capacitors using V2O5-activated carbon electrodes. ACS Energy Lett 5:3132–3139. https://doi.org/10.1021/acsenergylett.0c01528

    Article  CAS  Google Scholar 

  35. Liu Y, Miao X, Zhang X, Chen S, Chen Y, Lin J, Wang W, Zhang Y (2021) High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment. J Power Sources 495:229789. https://doi.org/10.1016/j.jpowsour.2021.229789

    Article  CAS  Google Scholar 

  36. Zeng S, Shi X, Zheng D, Yao C, Wang F, Xu W, Lu X (2021) Molten salt assisted synthesis of pitch derived carbon for zn ion hybrid supercapacitors. Mater Res Bull 135:111134. https://doi.org/10.1016/j.materresbull.2020.111134

    Article  CAS  Google Scholar 

  37. Inoue H, Morimoto T, Nohara S (2007) Electrochemical characterization of a hybrid capacitor with Zn and activated carbon electrodes. Electrochem Solid State Lett 10:A261–A263. https://doi.org/10.1149/1.2781524

    Article  CAS  Google Scholar 

  38. Wang Q, Wang S, Guo X, Ruan L, Wei N, Ma Y, Li J, Wang M, Li W, Zeng W (2019) MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv Mater 5:1900537. https://doi.org/10.1002/aelm.201900537

    Article  CAS  Google Scholar 

  39. Li X, Lv R, Zou S, Na B, Liu P, Ma Y, Liu H (2019) Polyaniline nanopillars on surface cracked carbon fibers as an ultrahigh-performance cathode for a flexible rechargeable aqueous Zn-ion battery. Compos Sci Technol 180:71–77. https://doi.org/10.1016/j.compscitech.2019.05.016

    Article  CAS  Google Scholar 

  40. Wu W, Lin Z, Shi HY, Lin L, Yang X, Yu S, Liu XX, Sun X (2021) Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries. Chem Eng J 427:131988. https://doi.org/10.1016/j.cej.2021.131988

    Article  CAS  Google Scholar 

  41. Wu W, Shi HY, Lin Z, Yang X, Li C, Lin L, Song Y, Guo D, Liu XX, Sun X (2021) The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chem Eng J 419:129659. https://doi.org/10.1016/j.cej.2021.129659

    Article  CAS  Google Scholar 

  42. Guo F, Gao S, Ji C, Mi H, Li H, Zhang W, Pang H (2021) Finely crafted polyaniline cathode for high-performance flexible quasi-solid-state Zn-ion battery. Solid State Ion 364:115612. https://doi.org/10.1016/j.ssi.2021.115612

    Article  CAS  Google Scholar 

  43. Wang L, Huang M, Huang J, Tang X, Li L, Peng M, Zhang K, Hu T, Yuan K, Chen Y (2021) Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. J Mater Chem A 9:15404–15414. https://doi.org/10.1039/d1ta03568a

    Article  CAS  Google Scholar 

  44. Wan F, Zhang L, Wang X, Bi S, Niu Z, Chen J (2018) An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv Funct Mater 28:1804975. https://doi.org/10.1002/adfm.201804975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51763008); the Natural Science Foundation of Guangxi Province (No. 2022GXNSFAA035597, 2019GXNSFAA245028, 2018GXNSFAA281241); the Project of Department of Science and Technology of Guilin (2020010906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Yang or Limin Zang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1595 kb)

Supplementary file2 (MPG 2309 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yao, Q., Tang, S. et al. Zinc-ion hybrid supercapacitor with extraordinary shape memory and high performance from nano-architectured polyaniline on NiTi alloy wire. J Mater Sci 57, 19936–19945 (2022). https://doi.org/10.1007/s10853-022-07848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07848-8

Navigation