Skip to main content
Log in

Recent progresses in pillar[n]arene-based photocatalysis

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By fully considering its hydrophobic/electron-rich cavity, planar chirality, as well as rigid chemical structures, pillar[n]arene has the capacity of contributing its molecular recognition, self-assembly, as well as thus obtained advanced hierarchical materials in photocatalysis. In this review, we discussed and summarized the recent progress in pillar[n]arene-based photocatalysis. Interestingly, it was found that pillar[n]arene played diverse roles in photocatalysis, for example, providing host–guest interactions as phase transfer catalyst in photoreduction/dehalogenation/oxidation for improving the water-solubility of substrates and functional molecules, contributing hydrophobic/electron-rich cavity, inducing planar chirality as homogenous catalyst in photocyclodimerization/redox/dehalogenation for catalyzing selective substrates, and serving as building blocks or reactive sites in the fabrication of hierarchical (hybrid) heterogenous catalyst in selective reactions.

Graphical abstract

The recent progress about pillar[n]arene-based phase transfer catalysts, homogeneous catalysts and heterogeneous catalysts in photocatalysis was summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Copyright 2016, Springer Nature

Scheme 1
Figure 2
Figure 3
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

Abbreviations

CAC:

Critical aggregation concentration

K a :

Associate constant

PSA:

Pillar[n]arene-based self-assembled amphiphiles

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  1. Ogoshi T, Yamagishi T (2013) Pillararenes: versatile synthetic receptors for supramolecular chemistry. Eur J Org Chem 2013:2961–2975. https://doi.org/10.1002/ejoc.201300079

    Article  CAS  Google Scholar 

  2. Ogoshi T (2014) Interview with tomoki ogoshi. Chem Commun 50:4774–4775. https://doi.org/10.1039/c4cc90104e

    Article  Google Scholar 

  3. Cohen Y, Ogoshi T (2018) Special issue: pillararenes-the first decade. Isr J Chem 58:1151–1151. https://doi.org/10.1002/ijch.201800164

    Article  CAS  Google Scholar 

  4. Cao DR, Meier H (2018) Pillarquinones and pillararenequinones. Isr J Chem 58:1152–1157. https://doi.org/10.1002/ijch.201800007

    Article  CAS  Google Scholar 

  5. Xue M, Yang Y, Chi XD, Zhang ZB, Huang FH (2012) Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res 45:1294–1308. https://doi.org/10.1021/ar2003418

    Article  CAS  Google Scholar 

  6. Cragg PJ, Sharma K (2012) Pillar[5]arenes: fascinating cyclophanes with a bright future. Chem Soc Rev 41:597–607. https://doi.org/10.1039/c1cs15164a

    Article  CAS  Google Scholar 

  7. Ogoshi T (2012) Synthesis of novel pillar-shaped cavitands “pillar[5]arenes” and their application for supramolecular materials. J Incl Phenom Macrocycl Chem 72:247–262. https://doi.org/10.1007/s10847-011-0027-2

    Article  CAS  Google Scholar 

  8. Cao DR, Meier H (2015) Synthesis of pillar[6]arenes and their host-guest complexes. Synthesis 47:1041–1056. https://doi.org/10.1055/s-0034-1378688

    Article  CAS  Google Scholar 

  9. Ogoshi T, Yamagishi TA, Nakamoto Y (2016) Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev 116:7937–8002. https://doi.org/10.1021/acs.chemrev.5b00765

    Article  CAS  Google Scholar 

  10. Petroselli M, Chen YQ, Rebek JJ, Yu Y (2021) Binding and reactivity in deep cavitands based on resorcin[4]arene. Green Synth and Catal 2:123–130. https://doi.org/10.1016/j.gresc.2021.03.004

    Article  Google Scholar 

  11. Nierengarten I, Deschenaux R, Nierengarten JF (2016) From pillar[n]arene scaffolds for the preparation of nanomaterials to pillar[5]arene-containing rotaxanes. Chim Inter J Chem 70:61–66. https://doi.org/10.2533/chimia.2016.61

    Article  CAS  Google Scholar 

  12. Behera H, Yang L, Hou JL (2020) Pillar[n]arenes: chemistry and their material applications. Chin J Chem 38:215–217. https://doi.org/10.1002/cjoc.201900408

    Article  CAS  Google Scholar 

  13. Li H, Quan KJ, Yang X, Li Z, Zhao L, Qiu HD (2020) Recent developments for the investigation of chiral properties and applications of pillar[5]arenes in analytical chemistry. Trends Analyt Chem 131:116026. https://doi.org/10.1016/j.trac.2020.116026

    Article  CAS  Google Scholar 

  14. Strutt NL, Zhang HC, Schneebeli ST, Stoddart JF (2014) Functionalizing pillar[n]arenes. Acc Chem Res 47:2631–2642. https://doi.org/10.1021/ar500177d

    Article  CAS  Google Scholar 

  15. Ogoshi T, Yamagishi T (2014) Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host-guest interactions. Chem Commun 50:4776–4787. https://doi.org/10.1039/c4cc00738g

    Article  CAS  Google Scholar 

  16. Guo LY, Du JH, Wang YR, Shi KY, Ma EQ (2020) Advances in diversified application of pillar[n]arenes. J Incl Phenom Macrocycl Chem 97:1–17. https://doi.org/10.1007/s10847-020-00986-z

    Article  CAS  Google Scholar 

  17. Joseph R (2021) Pillar[n]arene derivatives as sensors for amino acids. ChemistrySelect 6:3519–3533. https://doi.org/10.1002/slct.202100098

    Article  CAS  Google Scholar 

  18. Li YT, Wen J, Li JS, Wu ZJ, Li W, Yang K (2021) Recent applications of pillar[n]arene-based host-guest recognition in chemosensing and imaging. Chem Mater 6:3882–3897. https://doi.org/10.1021/acssensors.1c01510

    Article  CAS  Google Scholar 

  19. Acikbas Y, Aksoy M, Aksoy M, Karaagac D, Bastug E, Kursunlu AN, Erdogan M, Capan R, Ozmen M, Ersoz M (2021) Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J Incl Phenom Macrocycl Chem 100:39–54. https://doi.org/10.1007/s10847-021-01059-5

    Article  CAS  Google Scholar 

  20. Liu SY, Wu QX, Zhang TZ, Zhang HC, Han J (2021) Supramolecular brush polymers prepared from 1,3,4-oxadiazole and cyanobutoxy functionalised pillar[5]arene for detecting Cu2+. Org Biomol Chem 19:1287–1291. https://doi.org/10.1039/d0ob02587a

    Article  CAS  Google Scholar 

  21. Tan LL, Yang YW (2015) Molecular recognition and self-assembly of pillarenes. J Incl Phenom Macrocycl Chem 81:13–33. https://doi.org/10.1007/s10847-014-0441-3

    Article  CAS  Google Scholar 

  22. Si W, Xin PY, Li ZT, Hou JL (2015) Tubular unimolecular transmembrane channels: construction strategy and transport activities. Acc Chem Res 48:1612–1619. https://doi.org/10.1021/acs.accounts.5b00143

    Article  CAS  Google Scholar 

  23. Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW (2017) Biological and related applications of pillar[n]arenes. Chem Comm 53:677–696. https://doi.org/10.1039/c6cc08967d

    Article  CAS  Google Scholar 

  24. Cao S, Zhou L, Liu C, Zhang HC, Zhao YX, Zhao YL (2021) Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 181:113164. https://doi.org/10.1016/j.bios.2021.113164

    Article  CAS  Google Scholar 

  25. Cao S, Zhang HC, Zhao YX, Zhao YL (2021) Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience 1 28–43 doi:https://doi.org/10.1016/j.esci.2021.10.001

  26. Feng WX, Sun ZH, Barboiu M (2018) Pillar[n]arenes for construction of artificial transmembrane channels. Isr J Chem 58:1173–1182. https://doi.org/10.1002/ijch.201800017

    Article  CAS  Google Scholar 

  27. Guo DS, Liu Y (2014) Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc Chem Res 47:1925–1934. https://doi.org/10.1021/ar500009g

    Article  CAS  Google Scholar 

  28. Montes García V, Pérez Juste J, Pastoriza Santos I, Liz Marzán LM (2014) Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem Eur J 20:10874–10883. https://doi.org/10.1002/chem.201403107

    Article  CAS  Google Scholar 

  29. Murray J, Kim K, Ogoshi T, Yao W, Gibb BC (2017) The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem Soc Rev 46:2479–2496. https://doi.org/10.1039/c7cs00095b

    Article  CAS  Google Scholar 

  30. Wu JR, Yang YW (2019) New opportunities in synthetic macrocyclic arenes. Chem Comm 55:1533–1543. https://doi.org/10.1039/c8cc09374a

    Article  CAS  Google Scholar 

  31. Yang JJ, Liu JQ, Wang YF, Wang JW (2018) Synthesis, structure and catalysis/applications of N-heterocyclic carbene based on macrocycles. J Incl Phenom Macrocycl Chem 90:15–37. https://doi.org/10.1007/s10847-017-0766-9

    Article  CAS  Google Scholar 

  32. Li MH, Lou XY, Yang YW (2021) Pillararene-based molecular-scale porous materials. Chem Comm 57:13429–13447. https://doi.org/10.1039/d1cc06105d

    Article  CAS  Google Scholar 

  33. Yang ZC, Zhang ZR, Chen DY, Xu T, Wang Y, Sun LL (2021) Nanoparticle-aided nanoreactor for nanoproteomics. Anal Chem 93:10568–10576. https://doi.org/10.1021/acs.analchem.1c01704

    Article  CAS  Google Scholar 

  34. Zhang HC, Liu ZN, Xin FF, Zhao YL (2020) Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 420:213425. https://doi.org/10.1016/j.ccr.2020.213425

    Article  CAS  Google Scholar 

  35. Wang K, Tian X, Jordan JH, Velmurugan K, Wang L, Hu XY (2022) The emerging applications of pillararene architectures in supramolecular catalysis. Chin Chem Lett 33:89–96. https://doi.org/10.1016/j.cclet.2021.06.026

    Article  CAS  Google Scholar 

  36. Zhu SS, Wang DW (2017) Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater 7:1700841. https://doi.org/10.1002/aenm.201700841

    Article  CAS  Google Scholar 

  37. Rykaczewski KA, Wearing ER, Blackmun DE, Schindler CS (2022) Reactivity of oximes for diverse methodologies and synthetic applications. Nat Synth 1:24–36. https://doi.org/10.1038/s44160-021-00007-y

    Article  Google Scholar 

  38. Bin H, Dong S, Rong G, Xiong Z, Yuan FY, Astruc D (2018) Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coord Chem Rev 364:51–85. https://doi.org/10.1016/j.ccr.2018.03.013

    Article  CAS  Google Scholar 

  39. Kakuta T, Yamagishi T, Ogoshi T (2018) Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes. Acc Chem Res 51:1656–1666. https://doi.org/10.1021/acs.accounts.8b00157

    Article  CAS  Google Scholar 

  40. Khalil Cruz LE, Liu PR, Huang FH, Khashab NM (2021) Multifunctional pillar[n]arene-based smart nanomaterials. ACS Appl Mater Interfaces 13:31337–31354. https://doi.org/10.1021/acsami.1c05798

    Article  CAS  Google Scholar 

  41. Zhang HC, Strutt NL, Stoll RS, Li H, Zhu ZX, Stoddart JF (2011) Dynamic clicked surfaces based on functionalised pillar[5]arene. Chem Comm 47:11420–11422. https://doi.org/10.1039/c1cc14934b

    Article  CAS  Google Scholar 

  42. Xia DY, Wang LY, Lv XQ, Chao JB, Wei XH, Wang P (2018) Dual-responsive [2]pseudorotaxane on the basis of a pH-sensitive pillar[5]arene and its application in the fabrication of metallosupramolecular polypseudorotaxane. Macromolecules 51:2716–2722. https://doi.org/10.1021/acs.macromol.8b00354

    Article  CAS  Google Scholar 

  43. Li D, Han Y, Sun J, Liu WL, Yan CG (2022) Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J Incl Phenom Macrocycl Chem 102:261–270. https://doi.org/10.1007/s10847-021-01115-0

    Article  CAS  Google Scholar 

  44. Lou XY, Yang YW (2020) Pillar[n]arene-based supramolecular switches in solution and on surfaces. Adv Mater 32:2003263. https://doi.org/10.1002/adma.202003263

    Article  CAS  Google Scholar 

  45. Cragg PJ (2018) Pillar[n]arenes at the chemistry-biology interface. Isr J Chem 58:1158–1172. https://doi.org/10.1002/ijch.201800013

    Article  CAS  Google Scholar 

  46. Ogoshi T, Kakuta T, Yamagishi T (2019) Applications of pillar[n]arene-based supramolecular assemblies. Angew Chem Int Ed 58:2197–2206. https://doi.org/10.1002/anie.201805884

    Article  CAS  Google Scholar 

  47. Petkau Milroy K, Brunsveld L (2013) Supramolecular chemical biology; bioactive synthetic self-assemblies. Org Biomol Chem 11:219–232. https://doi.org/10.1039/C2OB26790J

    Article  CAS  Google Scholar 

  48. Rodell CB, Mealy JE, Burdick JA (2015) Supramolecular guest-host interactions for the preparation of biomedical materials. Bioconjug Chem 26:2279–2289. https://doi.org/10.1021/acs.bioconjchem.5b00483

    Article  CAS  Google Scholar 

  49. Song N, Kakuta T, Yamagishi TA, Yang YW, Ogoshi T (2018) Molecular-scale porous materials based on pillar[n]arenes. Chem 4:2029–2053. https://doi.org/10.1016/j.chempr.2018.05.015

    Article  CAS  Google Scholar 

  50. Yang XG, Wang DW (2018) Photocatalysis: From fundamental principles to materials and applications. ACS Appl Energy Mater 1:6657–6693. https://doi.org/10.1021/acsaem.8b01345

    Article  CAS  Google Scholar 

  51. Li CJ (2014) Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Comm 50:12420–12433. https://doi.org/10.1039/c4cc03170a

    Article  CAS  Google Scholar 

  52. Xiao TX, Xu LX, Zhong WW, Zhou L, Sun XQ, Hu XY, Wang LY (2018) Advanced functional materials constructed from pillar[n]arenes. Isr J Chem 58:1219–1229. https://doi.org/10.1002/ijch.201800026

    Article  CAS  Google Scholar 

  53. Shu XY, Xu KD, Hou DB, Li CJ (2018) Molecular recognition of water-soluble pillar[n]arenes towards biomolecules and drugs. Isr J Chem 58:1194–1204. https://doi.org/10.1002/ijch.201800115

    Article  CAS  Google Scholar 

  54. Liu Q, Tian X, Shen Y, Huang X, Wang K, Hu X-Y (2021) Influence of water-soluble pillararene hosts on kemp elimination. RSC Adv 11:38115–38119. https://doi.org/10.1039/D1RA07958A

    Article  CAS  Google Scholar 

  55. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364. https://doi.org/10.1042/Bj20150942

    Article  CAS  Google Scholar 

  56. Xiao TX, Zhong WW, Xu LX, Sun XQ, Hu XY, Wang LY (2019) Supramolecular vesicles based on pillar[n]arenes: design, construction, and applications. Org Biomol Chem 17:1336–1350. https://doi.org/10.1039/c8ob03095b

    Article  CAS  Google Scholar 

  57. Hua B, Zhang C, Zhou W, Shao L, Wang ZD, Wang LJ, Zhu HM, Huang FH (2020) Pillar[5]arene-based solid-state supramolecular polymers with suppressed aggregation-caused quenching effects and two-photon excited emission. J Am Chem Soc 142:16557–16561. https://doi.org/10.1021/jacs.0c08751

    Article  CAS  Google Scholar 

  58. Tian XQ, Zuo MZ, Niu PB, Velmurugan K, Wang KY, Zhao Y, Wang LY, Hu XY (2021) Orthogonal design of a water-soluble meso-tetraphenylethene-functionalized pillar[5]arene with aggregation-induced emission property and its therapeutic application. ACS Appl Mater Interfaces 13:37466–37474. https://doi.org/10.1021/acsami.1c07106

    Article  CAS  Google Scholar 

  59. Sun GP, Wang ZX, Hu YQ, Sun TM, Tang YF (2022) Anthryl-cinnamonitrile-based supramolecular artificial light-harvesting systems with high efficiency fabricated in aqueous solution. Dyes Pigm 197:109913. https://doi.org/10.1016/j.dyepig.2021.109913

    Article  CAS  Google Scholar 

  60. Zhong KP, Lu SY, Guo WT, Su JX, Sun SH, Hai J, Wang BD (2021) NIR emissive light-harvesting systems through perovskite passivation and sequential energy transfer for third-level fingerprint imaging. Chem Comm 57:9434–9437. https://doi.org/10.1039/d1cc03006j

    Article  CAS  Google Scholar 

  61. Shi BB, Li WC, Qin P, Zhao XX, Qi XN, Chai YP, Yang HH, Qu WJ, Yao H, Zhang YM, Wei TB, Lin Q (2022) A selective and stable vapochromic system constructed by pillar[5]arene-based host-guest interactions. Dyes Pigm 197:109885. https://doi.org/10.1016/j.dyepig.2021.109885

    Article  CAS  Google Scholar 

  62. Ju HQ, Zhu CN, Wang H, Page ZA, Wu ZL, Sessler JL, Huang FH (2022) Paper without a trail: time-dependent encryption using pillar[5]arene-based host-guest invisible ink. Adv Mater 34:2108163. https://doi.org/10.1002/adma.202108163

    Article  CAS  Google Scholar 

  63. Liu G, Zhang H, Xu X, Zhou Q, Dai X, Fan L, Mao P, Liu Y (2021) Supramolecular photoswitch with white-light emission based on bridged bis(pillar[5]arene)s. Mater Today Chem 22:100628. https://doi.org/10.1016/j.mtchem.2021.100628

    Article  CAS  Google Scholar 

  64. Bai Z, Velmurugan K, Tian X, Zuo M, Wang K, Hu X-Y (2022) Tetraphenylethylene-embedded pillar[5]arene-based orthogonal self-assembly for efficient photocatalysis in water. Beilstein J Org Chem 18:429–437. https://doi.org/10.3762/bjoc.18.45

    Article  CAS  Google Scholar 

  65. Sun G, Zuo M, Qian W, Jiao J, Hu XY, Wang L (2021) Highly efficient artificial light-harvesting systems constructed in aqueous solution for supramolecular photocatalysis. Green Synth Catal 2:32–37. https://doi.org/10.1016/j.gresc.2021.01.003

    Article  Google Scholar 

  66. Mahadevi AS, Sastry GN (2013) Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138. https://doi.org/10.1021/cr300222d

    Article  CAS  Google Scholar 

  67. Hu XY, Xiao TX, Lin C, Huang FH, Wang LY (2014) Dynamic supramolecular complexes constructed by orthogonal self-assembly. Acc Chem Res 47:2041–2051. https://doi.org/10.1021/ar5000709

    Article  CAS  Google Scholar 

  68. Guo F, Sun Y, Xi BH, Diao GW (2018) Recent progress in the research on the host-guest chemistry of pillar[n]arenes. Supramol Chem 30:81–92. https://doi.org/10.1080/10610278.2017.1368512

    Article  CAS  Google Scholar 

  69. Arranz-Mascarós P, Bazzicalupi C, Bianchi A, Giorgi C, Godino-Salido ML, Gutiérrez-Valero MD, Lopez Garzón R, Savastano M (2013) Thermodynamics of anion-π interactions in aqueous solution. J Am Chem Soc 135:102–105. https://doi.org/10.1021/ja311389z

    Article  CAS  Google Scholar 

  70. Rin AY, Wilks ES, Moss GP, Harada A (2008) Nomenclature for rotaxanes and pseudorotaxanes (IUPAC recommendations 2008). Pure Appl Chem 80:2041–2068. https://doi.org/10.1351/pac200880092041

    Article  CAS  Google Scholar 

  71. Fang L, Olson MA, Benitez D, Tkatchouk E, Goddard WA, Stoddart JF (2010) Mechanically bonded macromolecules. Chem Soc Rev 39:17–29. https://doi.org/10.1039/b917901a

    Article  CAS  Google Scholar 

  72. Sun Y, Guo F, Zuo T, Hua J, Diao G (2016) Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll. Nat Commun 7:12042. https://doi.org/10.1038/ncomms12042

    Article  CAS  Google Scholar 

  73. Dasgupta S, Mukherjee PS (2017) Carboxylatopillar[n]arenes: a versatile class of water soluble synthetic receptors. Org Biomol Chem 15:762–772. https://doi.org/10.1039/c6ob02214f

    Article  CAS  Google Scholar 

  74. Yu G, Jie K, Huang F (2015) Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 15:7240–7303. https://doi.org/10.1021/cr5005315

    Article  CAS  Google Scholar 

  75. Zhang HC, Liu ZN, Zhao YL (2018) Pillararene-based self-assembled amphiphiles. Chem Soc Rev 47:5491–5528. https://doi.org/10.1039/c8cs00037a

    Article  CAS  Google Scholar 

  76. Hao M, Sun G, Zuo M, Xu Z, Chen Y, Hu XY, Wang L (2020) A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis. Angew Chem Int Ed 59:10095–10100. https://doi.org/10.1002/anie.201912654

    Article  CAS  Google Scholar 

  77. Zhou L, Liu C, Zhang HC, Han J, Liu ZN (2021) Preparation and application of bodipy-containing pillararenes based supramolecular systems. Dyes Pigm 196:109828. https://doi.org/10.1016/j.dyepig.2021.109828

    Article  CAS  Google Scholar 

  78. Sun GP, Qian WR, Jiao JM, Han TT, Shi YK, Hu XY, Wang LY (2020) A highly efficient artificial light-harvesting system with two-step sequential energy transfer based on supramolecular self-assembly. J Mater Chem A 8:9590–9596. https://doi.org/10.1039/d0ta03169k

    Article  CAS  Google Scholar 

  79. Ji XF, Wang F, Yan XZ, Dong SY, Huang FH (2020) Construction of supramolecular polymers based on host-guest recognition(dagger). Chin J Chem 38:1473–1479. https://doi.org/10.1002/cjoc.202000314

    Article  CAS  Google Scholar 

  80. Chen YY, Jiang XM, Gong GF, Yao H, Zhang YM, Wei TB, Lin Q (2021) Pillararene-based aiegens: research progress and appealing applications. Chem Comm 57:284–301. https://doi.org/10.1039/d0cc05776b

    Article  CAS  Google Scholar 

  81. Zuo MZ, Qian WR, Hao M, Wang KY, Hu XY, Wang LY (2021) An aie singlet oxygen generation system based on supramolecular strategy. Chin Chem Lett 32:1381–1384. https://doi.org/10.1016/j.cclet.2020.09.033

    Article  CAS  Google Scholar 

  82. Song QY, Zhao KR, Xue TL, Zhao S, Pei D, Nie J, Chang YC (2021) Nondiffusion-controlled photoelectron transfer induced by host-guest complexes to initiate cationic photopolymerization. Macromolecules 54:8314–8320. https://doi.org/10.1021/acs.macromol.1c01457

    Article  CAS  Google Scholar 

  83. Gui JC, Yan ZQ, Peng Y, Yi JG, Zhou DY, Su D, Zhong ZH, Gao GW, Wu WH, Yang C (2016) Enhanced head-to-head photodimers in the photocyclodimerization of anthracenecarboxylic acid with a cationic pillar[6]arene. Chin Chem Lett 27:1017–1021. https://doi.org/10.1016/j.cclet.2016.04.021

    Article  CAS  Google Scholar 

  84. Ji JC, Wu WH, Wei XQ, Rao M, Zhou DY, Cheng G, Gong QY, Luo K, Yang C (2020) Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin-pillar[5]arene-hybridized hosts. Chem Commun 56:6197–6200. https://doi.org/10.1039/D0CC02055A

    Article  CAS  Google Scholar 

  85. Schmidt M, Esser B (2021) Cavity-promotion by pillar[5]arenes expedites organic photoredox-catalysed reductive dehalogenations. Chem Commun 57:9582–9585. https://doi.org/10.1039/d1cc03221f

    Article  CAS  Google Scholar 

  86. Yang K, Pei YX, Wen J, Pei ZC (2016) Recent advances in pillar[n]arenes: Synthesis and applications based on host-guest interactions. Chem Comm 52:9316–9326. https://doi.org/10.1039/c6cc03641d

    Article  CAS  Google Scholar 

  87. Kato K, Ohtani S, Fa S, Ogoshi T (2021) Discrete and continuous one-dimensional channels based on pillar[n]arenes. Bull Chem Soc Jpn 94:2319–2328. https://doi.org/10.1246/bcsj.20210243

    Article  CAS  Google Scholar 

  88. Wu YT, Li Q, Cao JJ, Liu Y, Wang ZJ, Shangguan LQ, Zhu HTZ (2021) Pillararene-peptide nanogels and their biomimetic mineralization hybrids for heterogeneous catalysis. ACS Appl Nano Mater 4:11126–11133. https://doi.org/10.1021/acsanm.1c02585

    Article  CAS  Google Scholar 

  89. Zhong KP, Lu SY, Guo WT, Su JX, Sun SH, Hai J, Chen FJ, Wang AQ, Wang BD (2021) Embedding cspbbr3 quantum dots into a pillar[5]arene-based supramolecular self-assembly for an efficient photocatalytic cross-coupling hydrogen evolution reaction. J Mater Chem A 9:10180–10185. https://doi.org/10.1039/d1ta00483b

    Article  CAS  Google Scholar 

  90. Qiang H, Chen T, Wang Z, Li WQ, Guo YZ, Yang J, Jia XS, Yang H, Hu WB, Wen K (2020) Pillar[5]arene based conjugated macrocycle polymers with unique photocatalytic selectivity. Chin Chem Lett 31:3225–3229. https://doi.org/10.1016/j.cclet.2020.04.020

    Article  CAS  Google Scholar 

  91. Xiao TX, Wang LY (2018) Recent advances of functional gels controlled by pillar[n]arene-based host-guest interactions. Tetrahedron Lett 59:1172–1182. https://doi.org/10.1016/j.tetlet.2018.02.028

    Article  CAS  Google Scholar 

  92. Li YF, Li Z, Lin Q, Yang YW (2020) Functional supramolecular gels based on pillar[n]arene macrocycles. Nanoscale 12:2180–2200. https://doi.org/10.1039/c9nr09532b

    Article  CAS  Google Scholar 

  93. Zhang SY, Li HB (2019) Host-guest sensing by nanopores and nanochannels. In: Liu Y, Chen Y, Zhang HY (eds) In: Handbook of Macrocyclic Supramolecular Assembly Springer Singapore Singapore pp 1–27

  94. Liz DG, Manfredi AM, Medeiros M, Montecinos R, Gómez-González B, Garcia-Rio L, Nome F (2016) Supramolecular phosphate transfer catalysis by pillar[5]arene. Chem Comm 52:3167–3170. https://doi.org/10.1039/C5CC10214F

    Article  CAS  Google Scholar 

  95. Wu QX, Zhang TZ, Li XY, Tu X, Zhang HC, Han J (2021) Construction of pillar[5]arene-based photochromic supramolecular polymeric system with tunable thermal bleaching rate. Polymer 231:124112. https://doi.org/10.1016/j.polymer.2021.124112

    Article  CAS  Google Scholar 

  96. Wang YL, Ping GC, Li CJ (2016) Efficient complexation between pillar[5]arenes and neutral guests: from host-guest chemistry to functional materials. Chem Comm 52:9858–9872. https://doi.org/10.1039/c6cc03999e

    Article  CAS  Google Scholar 

  97. Zhou YB, Tang H, Li ZH, Xu LN, Wang LY, Cao DR (2021) Bio-inspired aie pillar[5]arene probe with multiple binding sites to discriminate alkanediamines. Chem Comm 57:13114–13117. https://doi.org/10.1039/d1cc05153a

    Article  CAS  Google Scholar 

  98. Sowa A, Voskuhl J (2020) Host-guest complexes-boosting the performance of photosensitizers. Int J Pharm 586:119595. https://doi.org/10.1016/j.ijpharm.2020.119595

    Article  CAS  Google Scholar 

  99. Xu XW, Jerca VV, Hoogenboom R (2020) Structural diversification of pillar[n]arene macrocycles. ACS Appl Mater Interfaces 59:6314–6316. https://doi.org/10.1002/anie.202002467

    Article  CAS  Google Scholar 

  100. Liu X, Liu J, Meng C, Zhu P, Liu X, Qian JQ, Ling SJ, Zhang YA, Ling Y (2021) Pillar[6]arene-based supramolecular nanocatalysts for synergistically enhanced chemodynamic therapy by the intracellular cascade reaction. ACS Appl Mater Interfaces 13:53574–53585. https://doi.org/10.1021/acsami.1c15203

    Article  CAS  Google Scholar 

  101. Zhou X, Yang L, Tan X, Zhao G, Xie X, Du G (2018) A robust electrochemical immunosensor based on hydroxyl pillar[5]arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 112:31–39. https://doi.org/10.1016/j.bios.2018.04.036

    Article  CAS  Google Scholar 

  102. Zhang YM, He JX, Zhu W, Li YF, Fang H, Yao H, Wei TB, Lin Q (2019) Novel pillar[5]arene-based supramolecular organic framework gel for ultrasensitive response Fe3+ and F- in water. Mater Sci Eng C 100:62–69. https://doi.org/10.1016/j.msec.2019.02.094

    Article  CAS  Google Scholar 

  103. Du XZ (2017) Controlled assemblies of stimuli-responsive mesoporous silica drug delivery systems for controlled release of drugs. Chem Sci 62:519–531

    Google Scholar 

  104. Fa SX, Yamamoto M, Nishihara H, Sakamoto R, Kamiya K, Nishina Y, Ogoshi T (2020) Carbon-rich materials with three-dimensional ordering at the angstrom level. Chem Sci 11:5866–5873. https://doi.org/10.1039/d0sc02422h

    Article  CAS  Google Scholar 

  105. Kakuta T, Yamagishi T, Ogoshi T (2017) Supramolecular chemistry of pillar[n] arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click’’ reaction. Chem Commun 53:5250–5266. https://doi.org/10.1039/C7cc01833a

    Article  CAS  Google Scholar 

  106. Petrushenko IK, Tikhonov NI, Petrushenko KB (2021) Hydrogen adsorption on pillar[6]arene: a computational study. Physica E Low Dimens Syst Nanostruct 130:114719. https://doi.org/10.1016/j.physe.2021.114719

    Article  CAS  Google Scholar 

  107. Li Z, Li X, Yang YW (2019) Conjugated macrocycle polymer nanoparticles with alternating pillarenes and porphyrins as struts and cyclic nodes. Small 15:1805509. https://doi.org/10.1002/smll.201805509

    Article  CAS  Google Scholar 

  108. Li Z, Li L, Wang Y, Yang YW (2021) Pillararene-enriched linear conjugated polymer materials with thiazolo[5,4-d]thiazole linkages for photocatalysis. Chem Comm 57:6546–6549. https://doi.org/10.1039/D1CC02373J

    Article  CAS  Google Scholar 

  109. Li MH, Yang Z, Li Z, Wu JR, Yang B, Yang YW (2022) Construction of hydrazone-linked macrocycle-enriched covalent organic frameworks for highly efficient photocatalysis. Chem Mater 34:5726–5739. https://doi.org/10.1021/acs.chemmater.2c01358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. Z. and J. H. would like to thank Dr Nathan L. Strutt for his kind help and patient guide to pillararene chemistry during their academic visit to Northwestern University. H. Z. acknowledges the financial support from the “Young Talent Support Plan” (No. 010600-02913000000080, 010600-31222000000029 and 050700-71240000000046) of Xi’an Jiaotong University and Natural Science Foundation of Shaanxi Province (No. 2021JM-006). J.H. would like to thank the financial support by the Natural Science Foundation of Tianjin (No. 18JCYBJC20700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huacheng Zhang or Jie Han.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, Z., Zhou, L. et al. Recent progresses in pillar[n]arene-based photocatalysis. J Mater Sci 57, 16175–16191 (2022). https://doi.org/10.1007/s10853-022-07622-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07622-w

Navigation