Skip to main content

Advertisement

Log in

Ni-doped CoP with multi-level hollow structure as efficient electrocatalyst for overall water splitting

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-efficiency noble metal-free electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are of great significance for clean and renewable energy technologies. In this work, we construct novel hollow Ni-doped CoP nanoparticles embedded in hollow carbon polyhedron (denoted as H-Ni-CoP@HC) by using Ni-ZIF-67 as precursor through a developed pyrolysis–phosphidation strategy. The hollow structures of both cages and nanoparticles (NPs) endow the materials with abundant exposed active sites and significantly decreased mass transport resistance. Moreover, the material possesses strong electronic coupling between CoP and NiCoP. Consequently, low overpotentials of 170 and 150 mV are able to drive oxygen and hydrogen evolution at current densities of 10 mA cm−2 in 1.0 M KOH solution over H-Ni0.04-CoP@HC, respectively. Furthermore, the H-Ni0.04-CoP@HC as a bifunctional catalyst for overall water splitting yields current densities of 10 mA cm−2 at 1.47 V vs. RHE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dong T, Zhang X, Wang P, Chen HS, Yang P (2019) Hierarchical nickel-cobalt phosphide hollow spheres embedded in P-doped reduced graphene oxide towards superior electrochemistry activity. Carbon 149:222–233. https://doi.org/10.1016/j.carbon.2019.04.050

    Article  CAS  Google Scholar 

  2. Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee WG, Yoon T, Kim KS (2017) Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal 7:7196–7225. https://doi.org/10.1021/acscatal.7b01800

    Article  CAS  Google Scholar 

  3. Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Lett 12:1–29. https://doi.org/10.1007/s40820-020-00469-3

    Article  CAS  Google Scholar 

  4. Li Y, Sun Y, Qin Y, Zhang W, Wang L, Luo M, Yang H, Guo S (2020) Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv Energy Mater 10:1903120. https://doi.org/10.1002/aenm.201903120

    Article  CAS  Google Scholar 

  5. Yu Z, Liu H, Zhu M, Li Y, Li W (2021) Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 17:1903378. https://doi.org/10.1002/smll.201903378

    Article  CAS  Google Scholar 

  6. Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA, Chen S, Ren Z (2018) High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 9:2551. https://doi.org/10.1038/s41467-018-04746-z

    Article  CAS  Google Scholar 

  7. Lyu F, Wang Q, Choi SM, Yin Y (2019) Noble-metal-free electrocatalysts for oxygen evolution. Small 15:1804201. https://doi.org/10.1002/smll.201804201

    Article  CAS  Google Scholar 

  8. Liu Q, Wang Y, Dai L, Yao J (2016) Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv Mater 28:3000–3006. https://doi.org/10.1002/adma.201506112

    Article  CAS  Google Scholar 

  9. Zhang H, Maijenburg AW, Li X, Schweizer SL, Wehrspohn RB (2020) Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv Funct Mater 30:2003261. https://doi.org/10.1002/adfm.202003261

    Article  CAS  Google Scholar 

  10. Chen Z, Wei W, Ni BJ (2021) Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Current Opinion in Green and Sustain Chem 27:100398. https://doi.org/10.1016/j.cogsc.2020.100398

    Article  CAS  Google Scholar 

  11. Feng Y, Zhang T, Zhang J, Fan H, He C, Song J (2020) 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small 16:2002850. https://doi.org/10.1002/smll.202002850

    Article  CAS  Google Scholar 

  12. Zhao S, Berry-Gair J, Li W, Guan G, Yang M, Li J, Lai F, Corà F, Holt K, Brett DJL, He G, Parkin IP (2020) The role of phosphate group in doped cobalt molybdate: improved electrocatalytic hydrogen evolution performance. Adv Sci 7:1903674. https://doi.org/10.1002/advs.201903674

    Article  CAS  Google Scholar 

  13. Ji L, Wang J, Teng X, Meyer TJ, Chen Z (2019) CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal 10:412–419. https://doi.org/10.1021/acscatal.9b03623

    Article  CAS  Google Scholar 

  14. Hao Y, Xu Y, Liu W, Sun X (2018) Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Mater Horiz 5:108–115. https://doi.org/10.1039/C7MH00706J

    Article  CAS  Google Scholar 

  15. Kong T, Sui Y, Qi J, Wei F, Ren Y, Zhan Z, Sun Z, Zhou M, Meng D, Zhang L, Ma L, Wang Q (2021) In situ transformation of sea urchin-like NixCoyP@NF as an efficient bifunctional electrocatalyst for overall water splitting. J Mater Sci 32:1951–1961. https://doi.org/10.1007/s10854-020-04963-7

    Article  CAS  Google Scholar 

  16. Yang Y, Yao H, Yu Z, Islam SM, He H, Yuan M, Yue Y, Xu K, Hao W, Sun G, Li H, Ma S, Zapol P, Kanatzidis MG (2019) Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J Am Chem Soc 141:10417–10430. https://doi.org/10.1021/jacs.9b04492

    Article  CAS  Google Scholar 

  17. Li J, Xia Z, Zhou X, Qin Y, Ma Y, Qu Y (2017) Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res 10:814–825. https://doi.org/10.1007/s12274-016-1335-z

    Article  CAS  Google Scholar 

  18. Li Y, Li R, Wang D, Xu H, Meng F, Dong D, Jiang J, Zhang J, An M, Yang P (2021) A review: target-oriented transition metal phosphide design and synthesis for water splitting. Int J Hydrog Energy 46:5131–5149. https://doi.org/10.1016/j.ijhydene.2020.11.030

    Article  CAS  Google Scholar 

  19. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH (2021) Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 33:2007100. https://doi.org/10.1002/adma.202007100

    Article  CAS  Google Scholar 

  20. Chen J, Wang Y, Zhou M, Li Y (2022) Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co-CoSx heterojunction by intensified spin polarization. Chem Sci 13:4647–4653. https://doi.org/10.1039/D2SC00038E

    Article  CAS  Google Scholar 

  21. Niu S, Wang Z, Zhou T, Yu M, Yu M, Qiu J (2017) A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity. Adv Funct Mater 27:1605332. https://doi.org/10.1002/adfm.201605332

    Article  CAS  Google Scholar 

  22. Wang F, Hou T, Zhao X, Yao W, Fang R, Shen K, Li Y (2021) Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv Mater 33:2102690. https://doi.org/10.1002/adma.202102690

    Article  CAS  Google Scholar 

  23. Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R (2021) Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew Chem Int Ed 60:11048–11067. https://doi.org/10.1002/anie.202010093

    Article  CAS  Google Scholar 

  24. Shi J, Qiu F, Yuan W, Guo M, Lu ZH (2021) Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem Eng J 403:126312. https://doi.org/10.1016/j.cej.2020.126312

    Article  CAS  Google Scholar 

  25. Zhou H, Zheng M, Tang H, Xu B, Tang Y, Pang H (2020) Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small 16:1904252. https://doi.org/10.1002/smll.201904252

    Article  CAS  Google Scholar 

  26. Gu X, Liu Z, Liu H, Pei C, Feng L (2021) Fluorination of ZIF-67 framework templated Prussian blue analogue nano-box for efficient electrochemical oxygen evolution reaction. Chem Eng J 403:126371. https://doi.org/10.1016/j.cej.2020.126371

    Article  CAS  Google Scholar 

  27. Zhong L, Zhou H, Li R, Bian T, Wang S, Yuan A (2021) In situ confinement pyrolysis of ZIF-67 nanocrystals on hollow carbon spheres towards efficient electrocatalysts for oxygen reduction. J Colloid Interf Sci 584:439–448. https://doi.org/10.1016/j.jcis.2020.10.020

    Article  CAS  Google Scholar 

  28. Huang C, Ji Q, Zhang H, Wang Y, Wang S, Liu X, Guo Y, Zhang C (2022) Ru-incorporated Co3O4 nanoparticles from self-sacrificial ZIF-67 template as efficient bifunctional electrocatalysts for rechargeable metal-air battery. J Colloid Interf Sci 606:654–665. https://doi.org/10.1016/j.jcis.2021.08.046

    Article  CAS  Google Scholar 

  29. Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006. https://doi.org/10.1038/nenergy.2015.6

    Article  CAS  Google Scholar 

  30. Liang Q, Chen J, Wang F, Li Y (2020) Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coor Chem Rev 424:213488. https://doi.org/10.1016/j.ccr.2020.213488

    Article  CAS  Google Scholar 

  31. Zhan W, Wang Y, Chen J, Chen Z, Li Y (2022) Boosting the Fischer-Tropsch synthesis performances of cobalt-based catalysts via geometric and electronic engineering: construction of hollow structures. Appl Catal B: Environ 313:121469. https://doi.org/10.1016/j.apcatb.2022.121469

    Article  CAS  Google Scholar 

  32. Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060. https://doi.org/10.1021/acs.chemrev.5b00731

    Article  CAS  Google Scholar 

  33. Dang S, Zhu QL, Xu Q (2017) Nanomaterials derived from metal-organic frameworks. Nat Rev Mater 3:17075. https://doi.org/10.1038/natrevmats.2017.75

    Article  CAS  Google Scholar 

  34. Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L (2021) MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 439:213946. https://doi.org/10.1016/j.ccr.2021.213946

    Article  CAS  Google Scholar 

  35. Hu W, Zheng M, Xu B, Wei Y, Zhu W, Li Q, Pang H (2021) Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage. J Mater Chem A 9:3880–3917. https://doi.org/10.1039/D0TA10666F

    Article  CAS  Google Scholar 

  36. Li Z, Gao R, Feng M, Deng YP, Xiao D, Zheng Y, Zhao Z, Luo D, Liu Y, Zhang Z, Wang D, Li Q, Li H, Wang X, Chen Z (2021) Modulating metal-organic frameworks as advanced oxygen electrocatalysts. Adv Energy Mater 11:2003291. https://doi.org/10.1002/aenm.202003291

    Article  CAS  Google Scholar 

  37. Lei Z, Tan Y, Zhang Z, Wu W, Cheng N, Chen R, Mu S, Sun X (2021) Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res 14:868–878. https://doi.org/10.1007/s12274-020-3127-8

    Article  CAS  Google Scholar 

  38. Zhu Y, Zhang L, Zhang X, Li Z, Zha M, Li M, Hu G (2021) Double functionalization strategy toward Co-Fe-P hollow nanocubes for highly efficient overall water splitting with ultra-low cell voltage. Chem Eng J 405:127002. https://doi.org/10.1016/j.cej.2020.127002

    Article  CAS  Google Scholar 

  39. Zheng Y, Zhang L, Huang H, Wang F, Yin L, Jiang H, Wang D, Yang J, Zuo G (2019) ZIF-67-derived Co, Ni and S co-doped N-enriched porous carbon polyhedron as an efficient electrocatalyst for oxygen evolution reaction (OER). Int J Hydro Energy 44:27465–27471. https://doi.org/10.1016/j.ijhydene.2019.08.227

    Article  CAS  Google Scholar 

  40. Lv H, Zhang X, Wang F, Lv G, Yu T, Lv M, Wang J, Zhai Y, Hu J (2020) ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors. J Mater Chem A 8:14287–14298. https://doi.org/10.1039/D0TA05062H

    Article  CAS  Google Scholar 

  41. Hu J, Chen J, Lin H, Liu R, Yang X (2018) MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction. J Solid State Chem 259:1–4. https://doi.org/10.1016/j.jssc.2017.12.030

    Article  CAS  Google Scholar 

  42. Gu J, Sun L, Zhang Y, Zhang Q, Li X, Si H, Shi Y, Sun C, Gong Y, Zhang Y (2020) MOF-derived Ni-doped CoP@ C grown on CNTs for high-performance supercapacitors. Chem Eng J 385:123454. https://doi.org/10.1016/j.cej.2019.123454

    Article  CAS  Google Scholar 

  43. Liang Q, Chen Z, Chen X, Li Y (2019) A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. J Mater Chem A 7:20310–20316. https://doi.org/10.1039/C9TA07481C

    Article  CAS  Google Scholar 

  44. Shi Y, Wang Y, Yu Y, Niu Z, Zhang B (2017) N-doped graphene wrapped hexagonal metal cobalt hierarchical nanosheets as a highly efficient water oxidation electrocatalyst. J Mater Chem A 5:8897–8902. https://doi.org/10.1039/C7TA02838E

    Article  CAS  Google Scholar 

  45. Wang J, Zhang M, Yang G, Song W, Zhong W, Wang X, Wang M, Sun T, Tang Y (2021) Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting. Adv Funct Mater 31:2101532. https://doi.org/10.1002/adfm.202101532

    Article  CAS  Google Scholar 

  46. Tang C, Zhang C, Matta SK, Jiao Y, Ostrikov K, Liao T, Kou L, Du A (2018) Predicting new two-dimensional Pd3(PS4)2 as an efficient photocatalyst for water splitting. J Phys Chem C 122:21927–21932. https://doi.org/10.1021/acs.jpcc.8b06622

    Article  CAS  Google Scholar 

  47. Li Z, Shi L, Franklin D, Koul S, Kushima A, Yang Y (2018) Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy 51:400–407. https://doi.org/10.1016/j.nanoen.2018.06.083

    Article  CAS  Google Scholar 

  48. Amiinu IS, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S (2018) From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv Funct Mater 28:1704638. https://doi.org/10.1002/adfm.201704638

    Article  CAS  Google Scholar 

  49. Li Y, Jia B, Fan Y, Zhu K, Li G, Su CY (2018) Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv Energy Mater 8:1702048. https://doi.org/10.1002/aenm.201702048

    Article  CAS  Google Scholar 

  50. Luo X, Ji P, Wang P, Cheng R, Chen D, Lin C, Zhang J, He J, Shi Z, Li N, Xiao S, Mu S (2020) Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv Energy Mater 10:1903891. https://doi.org/10.1002/aenm.201903891

    Article  CAS  Google Scholar 

  51. Peng L, Shah SSA, Wei Z (2018) Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin J Catal 39:1575–1593. https://doi.org/10.1016/S1872-2067(18)63130-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21825802, 22138003 and 22008075) and the Natural Science Foundation of Guangdong Province (2017A030312005, and 2021A1515010126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Chen or Yingwei Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 14826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, J., Tan, H. et al. Ni-doped CoP with multi-level hollow structure as efficient electrocatalyst for overall water splitting. J Mater Sci 57, 14430–14439 (2022). https://doi.org/10.1007/s10853-022-07533-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07533-w

Navigation