Skip to main content
Log in

Fluorescence-structural color photonic crystal security card based on ultraviolet-responsive core-interlayer-shell colloidal particles

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we report a kind of fluorescence-structural color photonic crystals (FSC-PCs) based on ultraviolet (UV)-responsive core-interlayer-shell (CIS) colloidal particles. The preparation process includes the synthesis of UV-responsive CIS colloidal particles and quick fabrication of FSC-PCs patterns. Here, fluorescent precursor spiropyran was added to the semi-continuous emulsion polymerization system and grafted onto polymer chains to form the colloidal particles, which were quickly assembled by spray coating method into FSC-PCs within a few minutes. The FSC-PCs have long-range disorder arrangement and angle-independent structural colors, which show structural colors in visible light and red fluorescent color in 365 nm UV light. Therefore, we designed and fabricated a two-side security card, both sides of which show different information under different light conditions. During the light switching progress, completely different information can be demonstrated reversibly, allowing data encryption and reading. The FSC-PCs with a simple quick assembly process and unique optical properties have profound potential in anti-counterfeiting and data display.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U (2015) Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem Rev 115:6265–6311. https://doi.org/10.1021/cr400081d

    Article  CAS  Google Scholar 

  2. Von Freymann G, Kitaev V, Lotschz BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554. https://doi.org/10.1039/c2cs35309a

    Article  CAS  Google Scholar 

  3. Van Heeswijk EPA, Kragt AJJ, Grossiord N, Schenning APHJ (2019) Environmentally responsive photonic polymers. Chem Commun 55:2880–2891. https://doi.org/10.1039/c8cc09672d

    Article  CAS  Google Scholar 

  4. Haque MA, Kurokawa T, Kamita G, Yue Y, Gong JP (2011) Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem Mater 23:5200–5207. https://doi.org/10.1021/cm2021142

    Article  CAS  Google Scholar 

  5. Arsenault AC, Clark TJ, von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I, Wang RZ, John S, Wiersma D, Ozin GA (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5:179–184. https://doi.org/10.1038/nmat1588

    Article  CAS  Google Scholar 

  6. Schäfer CG, Viel B, Hellmann GP, Rehahn M, Gallei M (2013) Thermo-cross-linked elastomeric opal films. ACS Appl Mater Interfaces 5:10623–10632. https://doi.org/10.1021/am402588v

    Article  CAS  Google Scholar 

  7. Ding T, Cao G, Schäfer CG, Zhao Q, Gallei M, Smoukov SK, Baumberg JJ (2015) Revealing invisible photonic inscriptions: images from strain. ACS Appl Mater Interfaces 7:13497–13502. https://doi.org/10.1021/acsami.5b02768

    Article  CAS  Google Scholar 

  8. Yetisen AK, Butt H, Volpatti LR, Pavlichenko I, Humar M, Kwok SJJ, Koo H, Kim KS, Naydenova I, Khademhosseini A, Hahn SK, Yun SH (2016) Photonic hydrogel sensors. Biotechnol Adv 34:250–271. https://doi.org/10.1016/j.biotechadv.2015.10.005

    Article  CAS  Google Scholar 

  9. Isapour G, Lattuada M (2018) Bioinspired stimuli-responsive color-changing systems. Adv Mater 30:1707069. https://doi.org/10.1002/adma.201707069

    Article  CAS  Google Scholar 

  10. Tian Y, Zhang J, Liu SS, Yang S, Yin SN, Wang CF, Chen L, Chen S (2016) Facile construction of dual bandgap optical encoding materials with PS@ P (HEMA-co-AA)/SiO2- TMPTA colloidal photonic crystals. Opt Mater 57:107–113. https://doi.org/10.1016/j.optmat.2016.04.027

    Article  CAS  Google Scholar 

  11. Gu ZZ, Iyoda T, Fujishima A, Sato O (2001) Photo-reversible regulation of optical stop bands. Adv Mater 13:1295–1298. https://doi.org/10.1002/1521-4095(200109)13:17%3c1295::AID-ADMA1295%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  12. Zhang JT, Chao X, Asher SA (2013) Asymmetric free-standing 2-D photonic crystal films and their Janus particles. J Am Chem Soc 135:11397–11401. https://doi.org/10.1021/ja405629k

    Article  CAS  Google Scholar 

  13. Fang Y, Fei W, Shen X, Guo J, Wang C (2021) Magneto-sensitive photonic crystal ink for quick printing of smart devices with structural colors. Mater Horiz 8:2079–2087. https://doi.org/10.1039/d1mh00577d

    Article  CAS  Google Scholar 

  14. Zhang H, Huang C, Li N, Wei J (2021) Fabrication of multicolor Janus microbeads based on photonic crystals and upconversion nanoparticles. J Colloid Interf Sci 592:249–258. https://doi.org/10.1016/j.jcis.2021.02.068

    Article  CAS  Google Scholar 

  15. Lu X, Chen C, Wen X, Han P, Jiang W, Liang G (2019) Highly charged, magnetically sensitive magnetite/polystyrene colloids: synthesis and tunable optical properties. J Mater Sci 54:7628–7636. https://doi.org/10.1007/s10853-019-03445-4

    Article  CAS  Google Scholar 

  16. Hong W, Yuan Z, Chen X (2020) Structural color materials for optical anticounterfeiting. Small 16:1907626. https://doi.org/10.1002/smll.201907626

    Article  CAS  Google Scholar 

  17. Bao B, Li M, Li Y, Jiang J, Gu Z, Zhang X, Jiang L, Song Y (2015) Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small 11:1649–1654. https://doi.org/10.1002/smll.201403005

    Article  CAS  Google Scholar 

  18. Yang D, Liao G, Huang S (2019) Hand painting of noniridescent structural multicolor through the self-assembly of YOHCO3 colloids and its application for anti-counterfeiting. Langmuir 35:8428–8435. https://doi.org/10.1021/acs.langmuir.9b01571

    Article  CAS  Google Scholar 

  19. Gao Z, Huang C, Yang D, Zhang H, Guo J, Wei J (2018) Dual-mode multicolored photonic crystal patterns enabled by ultraviolet-responsive core-shell colloidal spheres. Dyes Pigments 148:108–117. https://doi.org/10.1016/j.dyepig.2017.08.061

    Article  CAS  Google Scholar 

  20. Liu J, Ren J, Xie Z, Guan B, Wang J, Ikeda T, Jiang L (2018) Multi-functional organosilane-polymerized carbon dot inverse opals. Nanoscale 10:4642–4649. https://doi.org/10.1039/c7nr09387j

    Article  CAS  Google Scholar 

  21. Liu J, Xie Z, Shang Y, Ren J, Hu R, Guan B, Wang J, Keda T, Jiang L (2018) Lyophilic but nonwettable organosilane-polymerized carbon dots inverse opals with closed-cell structure. ACS Appl Mater Interfaces 10:6701–6710. https://doi.org/10.1021/acsami.7b17936

    Article  CAS  Google Scholar 

  22. Schäefer CG, Gallei M, Zahn JT, Engelhardt J, Hellmann GP, Rehahn M (2013) Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem Mater 25:2309–2318. https://doi.org/10.1021/cm400911j

    Article  CAS  Google Scholar 

  23. Hou J, Zhang H, Su B, Li M, Yang Q, Jiang L, Song Y (2016) Four-dimensional screening anti-counterfeiting pattern by inkjet printed photonic crystals. Chem Asian J 11:2680–2685

    Article  CAS  Google Scholar 

  24. Liu K, Tian Y, Li Q, Du XY, Zhang J, Wang CF, Chen S (2018) Microfluidic printing directing photonic crystal bead 2D code patterns. J Mater Chem C 6:2336–2341. https://doi.org/10.1039/c7tc05355j

    Article  CAS  Google Scholar 

  25. Qin L, Liu X, He K, Yu G, Yuan H, Xu M, Li F, Yu Y (2021) Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat Commun 12:699. https://doi.org/10.1038/s41467-021-20908-y

    Article  CAS  Google Scholar 

  26. Wang Y, Hong CY, Pan CY (2012) Spiropyran-based hyperbranched Star copolymer: synthesis, phototropy, FRET, and bioapplication. Biomacromol 13:2585–2593. https://doi.org/10.1021/bm3008346

    Article  CAS  Google Scholar 

  27. Huang CQ, Wang Y, Hong CY, Pan CY (2011) Spiropyran-based polymeric vesicles: preparation and photochromic properties. Macromol Rapid Commun 32:1174–1179. https://doi.org/10.1002/marc.201100197

    Article  CAS  Google Scholar 

  28. Wu T, Zou G, Hu J, Liu S (2009) Fabrication of photoswitchable and thermotunable multicolor fluorescent hybrid silica nanoparticles coated with dye-labeled poly(N-isopropylacrylamide) brushes. Chem Mater 21:3788–3798. https://doi.org/10.1021/cm901072g

    Article  CAS  Google Scholar 

  29. Raymo FM, Giordani S (2001) Signal processing at the molecular level. J Am Chem Soc 123:4651–4652. https://doi.org/10.1021/ja005699n

    Article  CAS  Google Scholar 

  30. Gao Z, Gao D, Huang C, Zhang H, Guo J, Wei J (2018) Dual-responsive SPMA-modified polymer photonic crystals and their dynamic display patterns. Macromol Rapid Commun 39:1800134. https://doi.org/10.1002/marc.201800134

    Article  CAS  Google Scholar 

  31. Zhu J, Wang J, Wang X, Zhu J, Yang Y, Tian J, Cui W, Ge C, Li Y, Pan Y, Gu H (2015) Facile synthesis of magnetic core-shell nanocomposites for MRI and CT bimodal imaging. J Mater Chem B 3:6905–6910. https://doi.org/10.1039/c5tb00775e

    Article  CAS  Google Scholar 

  32. Shi L, Zhang Y, Dong B, Zhan TR, Liu X, Zi J (2013) Amorphous photonic crystals with only short-range order. Adv Mater 25:5314–5320. https://doi.org/10.1002/adma.201301909

    Article  CAS  Google Scholar 

  33. Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, Park JG, Prum RO, Mochrie SGJ, O’Hern CS, Cao H, Dufresne ER (2010) Biomimetic isotropic nanostructures for structural coloration. Adv Mater 22:2939–2944. https://doi.org/10.1002/adma.200903693

    Article  CAS  Google Scholar 

  34. Takeoka Y (2012) Angle-independent structural coloured amorphous arrays. J Mater Chem 22:23299–23309. https://doi.org/10.1039/c2jm33643j

    Article  CAS  Google Scholar 

  35. Wang F, Zhang X, Zhang L, Cao M, Lin Y, Zhu J (2016) Rapid fabrication of angle-independent structurally colored films with a superhydrophobic property. Dyes Pigments 130:202–208. https://doi.org/10.1016/j.dyepig.2016.03.022

    Article  CAS  Google Scholar 

  36. Zhu MQ, Zhu L, Han JJ, Wu W, Hurst JK, Li ADQ (2006) Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc 128:4303–4309. https://doi.org/10.1021/ja0567642

    Article  CAS  Google Scholar 

  37. Chen J, Zeng F, Wu S, Su J, Tong Z (2009) Photoreversible fluorescent modulation of nanoparticles via one-step miniemulsion polymerization. Small 5:970–978. https://doi.org/10.1002/smll.200801067

    Article  CAS  Google Scholar 

  38. Abdollahi A, Mahdavian AR, Salehi-Mobarakeh H (2015) Preparation of stimuli-responsive functionalized latex nanoparticles: the effect of spiropyran concentration on size and photochromic properties. Langmuir 31:10672–10682. https://doi.org/10.1021/acs.langmuir.5b02612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was granted financial support from National Natural Science Foundation of China (Grant No. 51873009).

Author information

Authors and Affiliations

Authors

Contributions

NL: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing-original draft, Writing—Review & Editing. HZ: Methodology, Investigation, Writing—Review & Editing. ZC: Investigation. JW: Conceptualization, Data curation, Validation, Writing—Review & Editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Jie Wei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, H., Chen, Z. et al. Fluorescence-structural color photonic crystal security card based on ultraviolet-responsive core-interlayer-shell colloidal particles. J Mater Sci 57, 14310–14323 (2022). https://doi.org/10.1007/s10853-022-07495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07495-z

Navigation