Skip to main content

Advertisement

Log in

Copper containing 3D polyaniline/phytic acid hydrogels for photocatalytic hydrogen production

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Cu-PP hydrogel with 3D network was synthesized using a simple in-situ polymerization method. PA (phytic acid) acts as the dopants and crosslinking agent to form PANI-PA (polyaniline-phytic acid) hydrogel via in-situ polymerization of aniline. PA is also used as a chelating agent to coordinate with Cu2+ ion due to the high coordination capacity. When irradiated by light, Cu2+ was slowly reduced to form Cu NPs, distributing uniformly in the 3D matrix of PANI-PA. The 3D network nanostructure ensures a complete contact between the photocatalyst and water, promoting the separation of electrons and holes. The introduction of PANI-PA improves the separation efficiency of electron-hole pairs, where PANI-PA acts as a hole reservoir to trap the holes generated by Cu NPs, hindering the recombination of electron-hole pairs. The Cu0.2-PP hydrogel with a copper content of 30.8% exhibits the best hydrogen production rate (6.09 mmol·g−1·h−1), which is 6.7 times greater than that of pure Cu NPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535

    Article  CAS  Google Scholar 

  2. Xu X, Luo F, Tang W, Hu J, Zeng H, Zhou Y (2018) Enriching hot electrons via NIR-photon-excited plasmon in WS2 @ Cu hybrids for full-spectrum solar hydrogen evolution. Adv Func Mater 28(43):1804055

    Article  CAS  Google Scholar 

  3. Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B 244:1021–1064

    Article  CAS  Google Scholar 

  4. Zhao J, Liu B, Meng L, He S, Yuan R, Hou Y, Ding Z, Lin H, Zhang Z, Wang X, Long J (2019) Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Appl Catal B 256:117823

    Article  CAS  Google Scholar 

  5. Li J, Dong X, Sun Y, Cen W, Dong F (2018) Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts. Appl Catal B 226:269–277

    Article  CAS  Google Scholar 

  6. Ren M, Ao Y, Wang P, Wang C (2019) Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chem Eng J 378:122122

    Article  CAS  Google Scholar 

  7. Yoo JE, Lee K, Altomare M, Selli E, Schmuki P (2013) Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. Angew Chem Int Ed 52(29):7514–7517

    Article  CAS  Google Scholar 

  8. Kashyap T, Biswasi S, Pal AR, Choudhury B (2019) Unraveling the catalytic and plasmonic roles of g-C3N4 supported Ag and Au nanoparticles under selective photoexcitation. ACS Sustain Chem Eng 7(23):19295–19302

    Article  CAS  Google Scholar 

  9. Ma D, Shi JW, Sun D, Zou Y, Cheng L, He C, Wang Z, Niu C (2018) Au nanoparticle and CdS quantum dot codecoration of In2O3 nanosheets for improved H2 evolution resulting from efficient light harvesting and charge transfer. ACS Sustain Chem Eng 7(1):547–557

    Article  CAS  Google Scholar 

  10. Peng D, Zhang Y, Xu G, Tian Y, Ma D, Zhang Y, Qiu P (2020) Synthesis of multilevel structured MoS2@Cu/Cu2O@C visible-light-driven photocatalyst derived from MOF-guest polyhedra for cyclohexane oxidation. ACS Sustain Chem Eng 8(17):6622–6633

    Article  CAS  Google Scholar 

  11. Xiao Y, Wang K, Yang Z, Xing Z, Li Z, Pan K, Zhou W (2021) Plasma Cu-decorated TiO2-x/CoP particle-level hierarchical heterojunctions with enhanced photocatalytic-photothermal performance. J Hazard Mater 414:125487

    Article  CAS  Google Scholar 

  12. Chen S, Yang S, Sun X, He K, Ng YH, Cai X, Zhou W, Fang Y, Zhang S (2019) Carbon-coated Cu nanoparticles as a cocatalyst of g-C3N4 for enhanced photocatalytic H2 evolution activity under visible-light irradiation. Energy Technol 7:1800846

    Google Scholar 

  13. Chen W, Wang Y, Liu S, Gao L, Mao L, Fan Z, Shangguan W, Jiang Z (2018) Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Appl Surf Sci 445:527–534

    Article  CAS  Google Scholar 

  14. Wang T, Wu D, Wang Y, Huang T, Histand G, Wang T, Zeng H (2018) One-step solvothermal fabrication of Cu@PANI core-shell nanospheres for hydrogen evolution. Nanoscale 10(46):22055–22064

    Article  CAS  Google Scholar 

  15. Chang CJ, Chu KW (2016) ZnS/polyaniline composites with improved dispersing stability and high photocatalytic hydrogen production activity. Int J Hydrog Energy 41(46):21764–21773

    Article  CAS  Google Scholar 

  16. Saleh MR, Ahmed SM, Soliman SA, El-Bery HM (2022) Facile construction of self-assembled Cu@ polyaniline nanocomposite as an efficient noble-metal free cocatalyst for boosting photocatalytic hydrogen production. Int J Hydrog Energy 47(9):6011–6028

    Article  CAS  Google Scholar 

  17. Wu HH, Chang CW, Lu D, Maeda K, Hu C (2019) Synergistic effect of hydrochloric acid and phytic acid doping on polyaniline-coupled g-C3N4 nanosheets for photocatalytic Cr (VI) reduction and dye degradation. ACS Appl Mater Interfaces 11(39):35702–35712

    Article  CAS  Google Scholar 

  18. Jiang W, Luo W, Zong R, Yao W, Li Z, Zhu Y (2016) Polyaniline/carbon nitride nanosheets composite hydrogel: a separation-free and high-efficient photocatalyst with 3D hierarchical structure. Small 12(32):4370–4378

    Article  CAS  Google Scholar 

  19. Lee SL, Chang CJ (2019) Recent developments about conductive polymer based composite photocatalysts. Polymers 11(2):206

    Article  CAS  Google Scholar 

  20. Jiang W, Liu Y, Wang J, Zhang M, Luo W, Zhu Y (2016) Separation-free polyaniline/TiO2 3D hydrogel with high photocatalytic activity. Adv Mater Interfaces 3(3):1500502

    Article  CAS  Google Scholar 

  21. Wu D, Liu H, Chen J, Liu W, Histand G, Wang T (2020) Cu NPs-embedded cross-linked microporous 3D reduced graphene hydrogels as photocatalyst for hydrogen evolution. J Colloid Interf Sci 577:441–449

    Article  CAS  Google Scholar 

  22. Wang X, Shen Y, Xie A, Qiu L, Li S, Wang Y (2011) Novel structure CuI/PANI nanocomposites with bifunctions: superhydrophobicity and photocatalytic activity. J Mater Chem 21(26):9641–9646

    Article  CAS  Google Scholar 

  23. Ge L, Han C, Liu J (2012) In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J Mater Chem 22(23):11843–11850

    Article  CAS  Google Scholar 

  24. Wang L, Huang H, Xiao S, Cai D, Liu Y, Liu B, Wang D, Wang C, Li H, Wang Y, Li Q, Wang T (2014) Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions. ACS Appl Mater Inter 6(16):14131–14140

    Article  CAS  Google Scholar 

  25. Zarrin S, Heshmatpour F (2018) Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J Hazard Mater 351:147–159

    Article  CAS  Google Scholar 

  26. Zhao W, Li C, Wang A, Lv C, Zhu W, Dou S, Wang Q, Zhong Q (2017) Polyaniline decorated Bi2MoO6 nanosheets with effective interfacial charge transfer as photocatalysts and optical limiters. Phys Chem Chem Phys 19(42):28696–28709

    Article  CAS  Google Scholar 

  27. Wang X, Feng S, Zhao W, Zhao D, Chen S (2017) Ag/polyaniline heterostructured nanosheets loaded with g-C3N4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light. New J Chem 41(17):9354–9360

    Article  CAS  Google Scholar 

  28. Li J, Peng T, Zhang Y, Zhou C, Zhu A (2018) Polyaniline modified SnO2 nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Sep Purif Technol 201:120–129

    Article  CAS  Google Scholar 

  29. Sharma BK, Gupta AK, Khare N, Dhawan SK, Gupta HC (2009) Synthesis and characterization of polyaniline–ZnO composite and its dielectric behavior. Synth Met 159(5–6):391–395

    Article  CAS  Google Scholar 

  30. Shakoor A, Rizvi TZ, Nawaz A (2010) Raman spectroscopy and AC conductivity of polyaniline montmorillonite (PANI-MMT) nanocomposites. J Mater Sci-Mater El 22(8):1076–1080

    Article  CAS  Google Scholar 

  31. Bera S, Kundu S, Khan H, Jana S (2018) Polyaniline coated graphene hybridized SnO2 nanocomposite: low temperature solution synthesis, structural property and room temperature ammonia gas sensing. J Alloy Compd 744:260–270

    Article  CAS  Google Scholar 

  32. Wang C, Guo Z, Hong R, Gao J, Guo Y, Gu C (2018) A novel method for synthesis of polyaniline and its application for catalytic degradation of atrazine in a Fenton-like system. Chemosphere 197:576–584

    Article  CAS  Google Scholar 

  33. Wang C, Wang L, Jin J, Liu J, Li Y, Wu M, Chen L, Wang B, Yang X, Su BL (2016) Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Appl Catal B 188:351–359

    Article  CAS  Google Scholar 

  34. Zou T, Wang C, Tan R, Song W, Cheng Y (2017) Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light. J Hazard Mater 338:276–286

    Article  CAS  Google Scholar 

  35. Choudhary RB, Verma A (2019) Augmented structural, optical and electrical properties of CdS decorated PANI/rGO nanohybrids. Opt Mater 96:109310

    Article  CAS  Google Scholar 

  36. Zhang P, Wang T, Zeng H (2017) Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Appl Surf Sci 391:404–414

    Article  CAS  Google Scholar 

  37. Poulston S, Parlett PM, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and CuzO studied using XPS and XAES. Surf Inter Anal 24(12):811–820

    Article  CAS  Google Scholar 

  38. Zhang X, Fu A, Chen X, Liu L, Ren L, Tong L, Ye J (2019) Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution. Catal Today 335:166–172

    Article  CAS  Google Scholar 

  39. Chatterjee MJ, Ghosh A, Mondal A, Banerjee D (2017) Polyaniline–single walled carbon nanotube composite—a photocatalyst to degrade rose bengal and methyl orange dyes under visible-light illumination. RSC Adv 7(58):36403–36415

    Article  CAS  Google Scholar 

  40. Wu J, Li X, Shi W, Ling P, Sun Y, Jiao X, Gao S, Liang L, Xu J, Yan W, Wang C, Xie Y (2018) Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed 57(28):8719–8723

    Article  CAS  Google Scholar 

  41. Yan X, Jia Z, Che H, Chen S, Hu P, Wang J, Wang L (2018) A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution. Appl Catal B 234:19–25

    Article  CAS  Google Scholar 

  42. Li YF, Feng J, Dong FX, Ding R, Zhang ZY, Zhang XL, Chen Y, Bi YG, Sun HB (2017) Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures. Nanoscale 9(48):19353–19359

    Article  CAS  Google Scholar 

  43. Lou Y, Zhang Y, Cheng L, Chen J, Zhao Y (2018) A Stable Plasmonic Cu@Cu2O/ZnO heterojunction for enhanced photocatalytic hydrogen generation. Chemsuschem 11(9):1505–1511

    Article  CAS  Google Scholar 

  44. Kumar P, Mathpal MC, Swart HC (2018) Multifunctional properties of plasmonic Cu nanoparticles embedded in a glass matrix and their thermodynamic behavior. J Alloy Compd 747:530–542

    Article  CAS  Google Scholar 

  45. Deng Q, Duan X, Ng DH, Tang H, Yang Y, Kong M, Wu Z, Cai W, Wang G (2012) Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Inter 4(11):6030–6037

    Article  CAS  Google Scholar 

  46. Fageria P, Gangopadhyay S, Pande S (2014) Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv 4(48):24962–24972

    Article  CAS  Google Scholar 

  47. Wang X, Tang Y, Chen Z, Lim TT (2012) Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria. J Mater Chem 22(43):23149–23158

    Article  CAS  Google Scholar 

  48. Kontoleta E, Tsoukala A, Askes SH, Zoethout E, Oksenberg E, Agrawal H, Garnett EC (2020) Using hot electrons and hot holes for simultaneous cocatalyst deposition on plasmonic nanostructures. ACS Appl Mater Interf 12(32):35986–35994

    Article  CAS  Google Scholar 

  49. Cui W, He J, Wang H, Hu J, Liu L, Liang Y (2018) Polyaniline hybridization promotes photo-electro-catalytic removal of organic contaminants over 3D network structure of rGH-PANI/TiO2 hydrogel. Appl Catal B 232:232–245

    Article  CAS  Google Scholar 

  50. Wang X, Ye KH, Yu X, Zhu J, Zhu Y, Zhang Y (2018) Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes. J Power Sources 391:34–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province (2019A1515011368), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province (No. 2018A030310362), and the support of International Clean Energy Talent Program by China Scholarship Council (201904100037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Wang or Yingwei Li.

Ethics declarations

Conflict of interest

The authors declare that contents of this work have not conflict of interest with any individual or organization.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Wu, S., Wang, T. et al. Copper containing 3D polyaniline/phytic acid hydrogels for photocatalytic hydrogen production. J Mater Sci 57, 12836–12847 (2022). https://doi.org/10.1007/s10853-022-07424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07424-0

Navigation