Skip to main content
Log in

Solidification microstructure evolution in LA42 Mg alloy under various cooling rates

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of cooling rate on microstructure evolution of Mg–4La–2.5Al–0.3Mn (LA42) Mg alloy was investigated in this study. The results revealed that high-pressure die casting (HPDC) LA42 alloy exhibited small grain size and undeveloped dendritic structure as compared to permanent gravity casting (PGC) LA42 alloy. The dendrites in the HPDC LA42 alloy didn’t show obvious secondary branches (in parallel), due to the narrow constitutional undercooling zone in the frontier of liquid/solid interface and relatively smaller constitutional undercooling degree at the side of the primary dendritic trunk. The PGC LA42 alloy displayed an anomalous eutectic morphology, owing to the faceted growth of the eutectic compound Al5La2 (strong hexagonal crystallographic feature). In contrast, the HPDC LA42 alloy showed a regular eutectic feature that was interrelated to the generation of fibrous eutectic compound (Al, Mg)3La, whose lamellar distribution suggested a non-faceted growth. The converting of the eutectic nature was primarily attributed to the transition of the eutectic intermetallic compounds related to enhancement of undercooling. The effect of cooling rate on eutectic lamellar spacing (λ) for the HPDC LA42 alloy might depend on two factors: (1) the increasing of cooling rate during the eutectic nucleation stage decreased the critical nucleation radius and (2) the intensification of heat extraction at the eutectic growth stage raised the eutectic growth velocity (Ve).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scr Mater 128:107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035

    Article  CAS  Google Scholar 

  2. Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloy 1:2–22. https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  3. Xu TC, Yang Y, Peng XD, Song JF, Pan FH (2019) Overview of advancement and development trend on magnesium alloy. J Magnes Alloy 7:536–544. https://doi.org/10.1016/j.jma.2019.08.001

    Article  CAS  Google Scholar 

  4. Somekawa H, Nakajima K, Singh A, Mukai T (2010) Ductile fracture mechanism in fine grained magnesium alloy. Philos Mag Lett 90:831–839. https://doi.org/10.1080/09500839.2010.50844

    Article  CAS  Google Scholar 

  5. Prasad A, Si S, Ghori UR, Thirunavukkarasu G, Chiu YL, Jones IP, Lee SY, Singh SS, Gosvami NN, Jain J (2020) Effect of La addition on precipitation hardening in Mg–10Dy alloy. Materialia 14:100898. https://doi.org/10.1016/j.mtla.2020.100898

    Article  CAS  Google Scholar 

  6. Nakata T, Xu C, Kaibe K, Yoshid Y, Yoshid K, Kamado S (2021) Improvement of strength and ductility synergy in a room-temperature stretch-formable Mg–Al–Mn alloy sheet by twin-roll casting and low-temperature annealing. J Magnes Alloy: in press. https://doi.org/10.1016/j.jma.2021.07.017

    Article  Google Scholar 

  7. Hutchinson WB, Barnett MR (2010) Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr Mater 63:737–740. https://doi.org/10.1016/j.scriptamat.2010.05.047

    Article  CAS  Google Scholar 

  8. Bohlen J, Yi SB, Letzig D, Kainer KU (2010) Effect of rare earth elements on the microstructure and texture development in magnesium-manganese alloys during extrusion. Mater Sci Eng A 527:7092–7098. https://doi.org/10.1016/j.msea.2010.07.081

    Article  CAS  Google Scholar 

  9. Meyers MA, Vöhringer O, Lubarda VA (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039. https://doi.org/10.1016/S1359-6454(01)00300-7

    Article  CAS  Google Scholar 

  10. Cubides Y, Karayan AI, Vaughan MW, Karaman I, Castaneda H (2020) Enhanced mechanical properties and corrosion resistance of a fine-grained Mg–9Al–1Zn alloy: the role of bimodal grain structure and β-Mg17Al12 precipitates. Materialia 13:100840. https://doi.org/10.1016/j.mtla.2020.100840

    Article  CAS  Google Scholar 

  11. Koike J, Ohyama R, Kobayashi T, Suzuki M, Maruyama K (2003) Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater Trans 44:445–451. https://doi.org/10.2320/matertrans.44.445

    Article  CAS  Google Scholar 

  12. Xu WL, Yu JM, Jia LC, Gao C, Miao Z, Wu GQ, Li GJ, Zhang ZM (2021) Grain refinement impact on the mechanical properties and wear behavior of Mg–9Gd–3Y–2Zn–0.5Zr alloy after decreasing temperature reciprocating upsetting-extrusion. J Magnes Alloy 9:1471–1834. https://doi.org/10.1016/j.jma.2021.03.021

    Article  CAS  Google Scholar 

  13. Liao HB, Zhan MY, Li CB, Ma ZQ, Du J (2021) Grain refinement of Mg–Al alloys inoculated by MgAl2O4 powder. J Magnes Alloy 9:1211–1219. https://doi.org/10.1016/j.jma.2020.04.010

    Article  CAS  Google Scholar 

  14. Park SS, Bae GT, Kang DH, Jung I-H, Shin KS, Kim NJ (2007) Microstructure and tensile properties of twin-roll cast Mg–Zn–Mn–Al alloys. Scr Mater 57:577–593. https://doi.org/10.1016/j.scriptamat.2007.07.013

    Article  CAS  Google Scholar 

  15. Baek SM, Park HK, Yoon JI, Jung J, Moon JH, Lee SG, Kim JH, Kim TS, Lee S, Kim NJ, Kim HS (2018) Effect of secondary phase particles on the tensile behavior of Mg–Zn–Ca alloy. Mater Sci Eng A 735:288–294. https://doi.org/10.1016/j.msea.2018.08.050

    Article  CAS  Google Scholar 

  16. Su CY, Li DJ, Wang J, Shi RH, Luo AA, Zeng XQ, Lin ZH, Chen J (2020) Enhanced ductility in high-pressure die casting Mg–4Ce–xAl–0.5Mn Alloys via modifying second phase. Mater Sci Eng A 773:138870. https://doi.org/10.1016/j.msea.2019.138870

    Article  CAS  Google Scholar 

  17. Liu SQ, Wang X, Zu Q, Han BH, Han X, Cui CX (2021) Significantly improved particle strengthening of Al–Sc alloy by high Sc composition design and rapid solidification. Mater Sci Eng A 800:140304. https://doi.org/10.1016/j.msea.2020.140304

    Article  CAS  Google Scholar 

  18. Liu SQ, Wang X, Cui CX, Zhao LC, Li N, Zhang Z, Ding JH, Sha DH (2017) Enhanced grain refinement of in situ CeB6/Al composite inoculant on pure aluminum by microstructure control. J Alloys Compd 701:926–934. https://doi.org/10.1016/j.msea.2020.140304

    Article  CAS  Google Scholar 

  19. Easton M, StJohn D (2008) Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater Sci Eng A 486:8–13. https://doi.org/10.1016/j.msea.2007.11.009

    Article  CAS  Google Scholar 

  20. Tang HP, Wang QD, Lei C, Ye B, Wang K, Jiang HY, Ding WJ, Zhang XF, Lin Z, Zhang JB (2019) Effect of cooling rate on microstructure and mechanical properties of an Al–5.0Mg–3.0Zn–1.0Cu cast alloy. J Alloys Compd 801:596–608. https://doi.org/10.1016/j.jallcom.2019.06.002

    Article  CAS  Google Scholar 

  21. Karakulak E (2019) A review: past, present and future of grain refining of magnesium castings. J Magnes Alloy 7:355–369. https://doi.org/10.1016/j.jma.2019.05.001

    Article  CAS  Google Scholar 

  22. Liang GF, Ali Y, Qiang YG, Zhang MX (2018) Effect of cooling rate on grain refinement of cast aluminum alloys. Materialia 3:113–121. https://doi.org/10.1016/j.mtla.2018.08.008

    Article  CAS  Google Scholar 

  23. Liu X, Zhao QL, Jiang QC (2020) Effects of cooling rate and TiC nanoparticles on the microstructure and tensile properties of an Al–Cu cast alloy. Mater Sci Eng A 790:139737. https://doi.org/10.1016/j.msea.2020.139737

    Article  CAS  Google Scholar 

  24. Paliwal M, Jung I-H (2013) The evolution of the growth morphology in Mg–Al alloys depending on the cooling rate during solidification. Acta Mater 61:4848–4860. https://doi.org/10.1016/j.actamat.2013.04.063

    Article  CAS  Google Scholar 

  25. Braszc KN, Malik Z (2017) Effect of high-pressure die casting on structure and properties of Mg–5Al–0.4Mn-xRE (x = 1, 3 and 5 wt%) experimental alloys. J Alloys Compd 694:841–847. https://doi.org/10.1016/j.jallcom.2016.10.033

    Article  CAS  Google Scholar 

  26. Luo AA (2004) Recent magnesium alloy development for elevated temperature applications. Int Mater Rev 49:13–30. https://doi.org/10.1179/095066004225010497

    Article  CAS  Google Scholar 

  27. Zhu SM, Easton MA, Abbott TB, Gibson MA, Nie JF (2016) The influence of individual rare earth elements (La, Ce, or Nd) on creep resistance of die-cast magnesium alloy AE44. Adv Eng Mater 18:932–937. https://doi.org/10.1002/adem.201500545

    Article  CAS  Google Scholar 

  28. Zhao XF, Li ZX, Zhou WK, Li DJ, Qin M (2021) Effect of Al content on microstructure, thermal conductivity and mechanical properties of Mg–La–Al–Mn alloy. J Mater Res 36:3145–3154. https://doi.org/10.1557/s43578-021-00319-x

    Article  CAS  Google Scholar 

  29. Hitachi industry and control solutions Ltd. (2018) ADSTEFAN handbook. https://info.hitachi ics.co.jp/eng/products/adstefan

  30. Li X, Xiong SM, Guo Z (2016) Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy. J Mater Process Technol 231:1–7. https://doi.org/10.1016/j.jmatprotec.2015.12.005

    Article  CAS  Google Scholar 

  31. Yang M, Xiong SM, Guo Z (2015) Characterization of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase field modelling. Acta Mater 92:8–17. https://doi.org/10.1016/j.actamat.2015.03.044

    Article  CAS  Google Scholar 

  32. Yang M, Xiong SM, Guo Z (2016) Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys. Acta Mater 112:261–272. https://doi.org/10.1016/j.actamat.2016.04.014

    Article  CAS  Google Scholar 

  33. Goulart PR, Lazarine VB, Leal CV, Spinelli JE, Cheung N, Garcia A (2009) Investigation of intermetallics in hypoeutectic Al–Fe alloys by dissolution of the Al matrix. Intermetallics (Barking) 17:753–761. https://doi.org/10.1016/j.intermet.2009.03.003

    Article  CAS  Google Scholar 

  34. Palanisamy D, Srivastava C, Madras G, Chattopadhyay K (2017) High-temperature transformation pathways for metastable ferromagnetic binary Heusler (Al–55 at% Mn) alloy. J Mater Sci 52:4109–4119. https://doi.org/10.1007/s10853-016-0673-2

    Article  CAS  Google Scholar 

  35. Kurz W, Fisher DJ (1990) Fundamentals of solidification, 4th revised edn. Trans Tech Publications Ltd, pp 10–30, 63–111

  36. Shi R (2021) Nonisothermal dissolution kinetics on Mg17Al12 intermetallic in Mg–Al alloys. J Magnes Alloy. https://doi.org/10.1016/j.jma2021.02.007

    Article  Google Scholar 

  37. Verma A, Kumar S, Grant PS, O’Reilly KAQ (2013) Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy. J Alloys Compd 555:274–282. https://doi.org/10.1016/j.jallcom.2012.12.077

    Article  CAS  Google Scholar 

  38. Liu SQ, Wang X, Cui CX, Zhao LC, Liu SJ, Chen C (2015) Fabrication, microstructure and refining mechanism of in situ CeB6/Al inoculant in aluminum. Mater Des 65:432–437. https://doi.org/10.1016/j.matdes.2014.09.038

    Article  CAS  Google Scholar 

  39. Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC, Liu YJ, Fang MH, Huang ZH, Sercombe TB (2015) A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 95:74–82. https://doi.org/10.1016/j.actamat.2015.05.017

    Article  CAS  Google Scholar 

  40. Courtney (2005) Mechanical behavior of materials. Waveland, Long Grove

    Google Scholar 

  41. Wong C, Nogita K, Styles MJ, Zhu SM, Qiu D, McDonald SD, Gibson MA, Abbott TB, Easton MA (2019) Solidification path and microstructure evolution of Mg–3Al–14La alloy: implications for the Mg-rich corner of the Mg–Al–La phase diagram. J Alloys Compd 784:527–534. https://doi.org/10.1016/j.jallcom.2019.01.029

    Article  CAS  Google Scholar 

  42. Rzychoń T, Kiełbus A, Lityńska-Dobrzyńska L (2013) Microstructure, microstructural stability and mechanical properties of sandcast Mg–4Al–4RE alloy. Mater Charact 83:21–34. https://doi.org/10.1016/j.matchar.2013.06.001

    Article  CAS  Google Scholar 

  43. Meng FZ, Lv SH, Yang Q, Qin PF, Zhang JH, Guan K, Huang YD, Hort N, Li BS, Liu XJ, Meng J (2009) Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. J Alloys Compd 795:436–445. https://doi.org/10.1016/j.jallcom.2019.04.346

    Article  CAS  Google Scholar 

  44. Zhu SM, Wong C, Styles MJ, Abbotta TB, Nie J, Easton, (2019) Revisiting the intermetallic phases in high-pressure die-cast Mg–4Al–4Ce and Mg–4Al–4La alloys. Mater Charact 156:109839. https://doi.org/10.1016/j.matchar.2019.109839

    Article  CAS  Google Scholar 

  45. Yang Q, Lv SH, Qin PF, Meng FZ, Qiu X, Hua XR, Guan K, Suna W, Liu XJ, Meng J (2020) Interphase boundary segregation induced phase transformation in a high-pressure die casting Mg–Al–La–Ca–Mn alloy. Mater Des 190:108566. https://doi.org/10.1016/j.matdes.2020.108566

    Article  CAS  Google Scholar 

  46. Shu D, Sun B, Mi J, Grant PS (2011) A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys. Acta Mater 59:2135–2144. https://doi.org/10.1016/j.actamat.2010.12.014

    Article  CAS  Google Scholar 

  47. Luo SB, Wang WL, Chang J, Xia ZC, Wei B (2014) Comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy. Acta Mater 69:355–364. https://doi.org/10.1016/j.actamat.2013.12.009

    Article  CAS  Google Scholar 

  48. Lipton J, Glicksman ME, Kurz W (1984) Dendritic growth into undercooled alloy melts. Mater Sci Eng 65:57–63. https://doi.org/10.1016/0025-5416(84)90199-X

    Article  CAS  Google Scholar 

  49. Yang B, Gao YL, Zou CD, Zhai QJ, Abyzov AS, Zhuravlev E, Schmelzer JWP, Schick C (2011) Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Appl Phys A 104:189–196. https://doi.org/10.1007/s00339-010-6100-7

    Article  CAS  Google Scholar 

  50. Easton M, Stjohn M (1999) Grain refinement of aluminum alloys: part II. confirmation of, and a mechanism for the solute paradigm. Metall Mater Trans A 30:1625–1633. https://doi.org/10.1007/s11661-999-0099-4

    Article  Google Scholar 

  51. Deng MC, Sui S, Yao B, Ma L, Lin X, Chen J (2022) Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique. J Mater Sci Technol 101:308–320. https://doi.org/10.1016/j.jmst.2021.03.012

    Article  Google Scholar 

  52. Chen ZM, Yu WQ (2013) Foundry metal solidification mechanism, Peking University Press. pp 110–115

  53. Flemings MC (1974) Solidification processing. McGRAW-HILL, New York, pp 1488–1492

    Google Scholar 

  54. Azadehranjbar S, Shield JE (2020) Multiple origins of anomalous eutectic microstructure in rapidly solidified Mg–Al alloy. Materialia 9:100625. https://doi.org/10.1016/j.mtla.2020.100625

    Article  CAS  Google Scholar 

  55. Su CY, Li DJ, Luo AA, Shi RH, Zeng XQ (2019) Quantitative study of microstructure-dependent thermal conductivity in Mg–4Ce–xAl–0.5Mn alloys. Metall Mater Trans A 50:1970–1793. https://doi.org/10.1007/s11661-019-05136-w

    Article  CAS  Google Scholar 

  56. Gao MC, Rollett AD, Widom M (2007) Lattice stability of aluminum-rare earth binary systems: a first-principles approach. Phys Rev B 75:174120. https://doi.org/10.1103/PhysRevB.75.174120

    Article  CAS  Google Scholar 

  57. Lv SH, Meng FZ, Yang Q, Guan K, Meng J (2021) Atomic study on phase transformation of the strengthening phase in a die-casting Mg–Al–La alloy via an intermediate phase. Mater Des 208:109904. https://doi.org/10.1016/j.matdes.2021.109904

    Article  CAS  Google Scholar 

  58. Khan MI, Mostafa AO, Aljarrah M, Essadiqi E, Medraj M (2014) Influence of cooling rate on Micro-segregation behavior of magnesium alloys. J Mater. https://doi.org/10.1155/2014/657647

    Article  Google Scholar 

  59. Ferdian D, Lacaze J, Lizarralde I, Niklas A, Fernández-Calvo AI (2013) Study of the effect of cooling rate on eutectic modification in A356 aluminum alloys. Mater Sci Forum 765:130–134. https://doi.org/10.4028/www.scientific.net/MSF.765.130

    Article  CAS  Google Scholar 

  60. Wong C, Styles MJ, Zhu SM, Qiu D, McDonald SD, Zhu Y, Gibson MA, Abbotte TB, Eastona MA (2018) (Al, Mg)3La: a new phase in the Mg–Al–La system. Acta Crystall B 74:370–375. https://doi.org/10.1107/S205252061800834X

    Article  CAS  Google Scholar 

  61. Çadirli E, Gündüz M (2000) The dependence of lamellar spacing on growth rate and temperature gradient in the lead-tin eutectic alloy. J Mater Process Technol 97:74–81. https://doi.org/10.1016/S0924-0136(99)00344-1

    Article  Google Scholar 

  62. Akamatsu S, Bottin-Rousseau S, Faivre G (2011) Determination of the Jackson-Hunt constants of the In–In2Bi eutectic alloy based on in situ observation of its solidification dynamics. Acta Mater 59:7586–7591. https://doi.org/10.1016/j.actamat.2011.08.036

    Article  CAS  Google Scholar 

  63. Burden MH, Jones H (1970) Determination of cooling rate in splat-cooling from scale of microstructure. J Jpn I Met 98:249–252

    CAS  Google Scholar 

  64. Srivastava RM, Eckert J, Loser W, Dhindaw BK, Schultz L (2002) Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater Trans 43:1670–1675. https://doi.org/10.2320/matertrans.43.1670

    Article  CAS  Google Scholar 

  65. McDonald SD, Nogita K, Dahle AK (2004) Eutectic nucleation in Al–Si alloys. Acta Mater 52:4273–4280. https://doi.org/10.1016/j.actamat.2004.05.043

    Article  CAS  Google Scholar 

  66. Bluni ST, Notis MR, Marder AR (1995) Nucleation characteristics and microstructure in off-eutectic Al–Zn alloys. Acta Metall 43:1775–1782. https://doi.org/10.1016/0956-7151(94)00397-Z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This researches acquired supports from the collaboration research item between Shanghai Jiao Tong University and Hitachi (China) Ltd. The National Key R&D Program (No. 2021YFB3701101) supported by the Ministry of Science and Technology of China is acknowledged. This study was also supported by Qinghai Salt Lake Industry Co. Ltd financially by via of the Science and Technology Project (21-ZC0609-0003) and the National Natural Science Foundation of China (No. 51825101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejiang Li.

Ethics declarations

Conflict of interest

The authors announce there are no competing personal relationships or financial interests which could have shown to effect the content reported in this paper known by them.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Li, Z., Li, D. et al. Solidification microstructure evolution in LA42 Mg alloy under various cooling rates. J Mater Sci 57, 11411–11429 (2022). https://doi.org/10.1007/s10853-022-07330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07330-5

Navigation