Skip to main content
Log in

A powerful approach to develop nitrogen-doped graphene sheets: theoretical and experimental framework

  • Computational Materials Design
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have reported a novel route to develop highly conductive graphene sheets using camphor as a natural precursor followed by nitrogen doping via low-temperature post-annealing treatment. The effect of nitrogen-doped (N-doped) graphene sheets and undoped graphene sheets on electrical properties has been studied in detail. We reveal that by precise control of post-annealing temperature and nitrogen doping level, the sheet resistance of graphene can be achieved to as low as ~ 280 Ω/□ as well as demonstrating N-type degenerate semiconducting properties. Moreover, we have performed ab initio calculations of undoped and N-doped graphene with varying concentrations of 1%, 2%, 3% and 5% doping in a supercell of 100 atoms. A semi-empirical Extended Hückel Tight Binding model was utilized to study the Bandgap, projected density of states (PDOS) and the Total Energy of all the doped and undoped graphene structures. It was found that with an increase in the dopant concentration in a monolayer graphene supercell leads to an opening in the bandgap at the k-point of the band structure. These results lead to an agreement of N-type behavior of the graphene structure which is supported by the PDOS results of the valence orbitals of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2016) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  CAS  Google Scholar 

  3. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:11–14

    Google Scholar 

  4. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209

    Article  CAS  Google Scholar 

  5. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  6. Williams JR, DiCarlo L, Marcus CM (2007) Quantum hall effect in a gate-controlled p–n junction of graphene. Science 317:638–641

    Article  CAS  Google Scholar 

  7. Wolf EL (2014) Applications of graphene: an overview. Springer, Cham

    Book  Google Scholar 

  8. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Article  CAS  Google Scholar 

  9. Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446:56–59

    Article  CAS  Google Scholar 

  10. Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3:654–659

    Article  CAS  Google Scholar 

  11. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:1–4

    Google Scholar 

  12. Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194

    Article  CAS  Google Scholar 

  13. Gui G, Li J, Zhong J (2008) Band structure engineering of graphene by strain: first-principles calculations. Phys Rev B Condens Matter Mater Phys 78:1–6

    Article  CAS  Google Scholar 

  14. Dvorak M, Oswald W, Wu Z (2013) Bandgap opening by patterning graphene. Sci Rep 3:1–7

    Article  Google Scholar 

  15. Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10:4975–4980

    Article  CAS  Google Scholar 

  16. Deifallah M, McMillan PF, Corà F (2008) Electronic and structural properties of two-dimensional carbon nitride graphenes. J Phys Chem C 112:5447–5453

    Article  CAS  Google Scholar 

  17. Xu H, Ma L, Jin Z (2018) Nitrogen-doped graphene: synthesis, characterizations and energy applications. J Energy Chem 27:146–160

    Article  Google Scholar 

  18. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024

    Article  CAS  Google Scholar 

  19. Jia L, Wang DH, Huang YX, Xu AW, Yu HQ (2011) Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J Phys Chem C 115:11466–11473

    Article  CAS  Google Scholar 

  20. Li M, Wu Z, Ren W, Cheng H, Tang N, Wu W, Zhong W, Du Y (2012) The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material’s photoluminescence. Carbon N Y 50:5286–5291

    Article  CAS  Google Scholar 

  21. Cui L, Chen X, Liu B, Chen K, Chen Z, Qi Y, Xie H, Zhou F, Rümmeli MH, Zhang Y, Liu Z (2018) Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications. ACS Appl Mater Interfaces 10:32622–32630

    Article  CAS  Google Scholar 

  22. Zafar Z, Ni ZH, Wu X, Shi ZX, Nan HY, Bai J, Sun LT (2013) Evolution of Raman spectra in nitrogen doped graphene. Carbon N Y 61:57–62

    Article  CAS  Google Scholar 

  23. Wang C, Zhou Y, He L, Ng TW, Hong G, Wu QH, Gao F, Lee CS, Zhang W (2013) In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale 5:600–605

    Article  CAS  Google Scholar 

  24. Lin L, Li J, Yuan Q, Li Q, Zhang J, Sun L, Rui D, Chen Z, Jia K, Wang M, Zhang Y, Rummeli MH, Kang N, Xu HQ, Ding F, Peng H, Liu Z (2019) Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Sci Adv 5:1–10

    CAS  Google Scholar 

  25. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  26. Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Eléas AL, Cruz-Silva R, Gutiérrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier JC, Pan M, Terrones M (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:1–8

    Article  CAS  Google Scholar 

  27. Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee ME, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2020) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter 32:015901

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186

    Article  CAS  Google Scholar 

  29. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  30. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  31. Wu M, Cao C, Jiang JZ (2010) Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21:505202

    Article  CAS  Google Scholar 

  32. Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3:802–812

    Article  CAS  Google Scholar 

  33. Ullah S, Hussain A, Syed W, et al (2015) Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study. RSC Adv 5:55762–55773. https://doi.org/10.1039/C5RA08061D

    Article  CAS  Google Scholar 

  34. Denis PA (2010) Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem Phys Lett 492:251–257

    Article  CAS  Google Scholar 

  35. Chaliyawala HA, Rajaram N, Patel R, Ray A, Mukhopadhyay I (2019) Controlled Island formation of large-area graphene sheets by atmospheric chemical vapor deposition: role of natural camphor. ACS Omega 4:8758–8766

    Article  CAS  Google Scholar 

  36. Kern W, Puotinen DA (1970) Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev 31:187–206

    CAS  Google Scholar 

  37. Chaliyawala HA, Narasimman R, Pati RK, Mukhopadhyay I, Ray A (2021) Effect of copper pretreatment on optical and electrical properties of camphor-based graphene by chemical vapour deposition. J Mater Sci Mater Electron 33(11):8397–8408

    Article  CAS  Google Scholar 

  38. Stokbro K, Petersen DE, Smidstrup S, Blom A, Ipsen M, Kaasbjerg K (2010) Semiempirical model for nanoscale device simulations. Phys Rev B Condens Matter Mater Phys 82:1–7

    Article  CAS  Google Scholar 

  39. Cerdá J, Soria F (2000) Accurate and transferable extended Hückel-type tight-binding parameters. Phys Rev B - Condens Matter Mater Phys 61:7965–7971

    Article  Google Scholar 

  40. Jin Z, Yao J, Kittrell C, Tour JM (2011) Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5:4112–4117

    Article  CAS  Google Scholar 

  41. Bahamon D, Khalil M, Belabbes A, Alwahedi Y, Vega LF, Polychronopoulou K (2021) A DFT study of the adsorption energy and electronic interactions of the SO2 molecule on a CoP hydrotreating catalyst. RSC Adv 11:2947–2957

    Article  CAS  Google Scholar 

  42. Farmanzadeh D, Ghazanfary S (2013) The effect of electric field on the interaction of glycine with (6,0) single-walled boron nitride nanotubes. J Serbian Chem Soc 78:75–83

    Article  CAS  Google Scholar 

  43. Chaliyawala HA, Purohit Z, Agarwal N, Gupta G, Ray A, Mukhopadhyay I (2019) A solid carbon source based high performance mono/bi layer graphene/SiNWs heterojunction NIR photodetector. Opt Sens 11028:1102803

    Google Scholar 

Download references

Acknowledgements

The authors thank Pandit Deendayal Energy University (PDEU) for providing the necessary facilities to carry out this investigation. Financial support from Solar Research and Development Center (SRDC), PDEU, is deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harsh Chaliyawala or Indrajit Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vemuri, S.K., Chaliyawala, H., Ray, A. et al. A powerful approach to develop nitrogen-doped graphene sheets: theoretical and experimental framework. J Mater Sci 57, 10714–10723 (2022). https://doi.org/10.1007/s10853-022-07239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07239-z

Navigation