Skip to main content

Advertisement

Log in

Ultralow diffusion barrier of double transition metal MoWC monolayer as Li-ion battery anode

  • Computational Materials Design
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrochemical performance of double transition metal MoWC MXene has been examined by employing first principles approach for its popular usage as an efficient anode material in Li-ion batteries. The thermodynamic stability is determined using ab-initio molecular dynamics, geometry optimization and phonon dispersion calculations. The electronic structural calculations reveal that the MoWC monolayer exhibits high electronic conduction. Further, the low diffusion barrier of 0.040 eV on W-layer side and 0.029 eV on Mo-layer side of MoWC monolayer have been observed in present study. Moreover, the charge storage capacity of 670 mAh g−1 is predicted for the respective material, which indicates its better electrochemical performance as compared to their single metal carbides Mo2C and W2C MXenes. Also, the low average working voltage (~ 0.44 V) of MoWC MXene suggests its application as a potential candidate for anode material in Li-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  2. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607. https://doi.org/10.1002/adma.200901710

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  4. Dell R, Rand DAJ (2001) Energy storage a key technology for global energy sustainability. J Power Sources 100:2–17. https://doi.org/10.1016/S0378-7753(01)00894-1

    Article  CAS  Google Scholar 

  5. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  Google Scholar 

  6. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Maa X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4:3680–3688. https://doi.org/10.1039/C1EE01782A

    Article  CAS  Google Scholar 

  7. Urban A, Seo DH, Ceder G (2016) Computational understanding of Li-ion batteries. Comput Mater 2:16002. https://doi.org/10.1038/npjcompumats.2016.10

    Article  CAS  Google Scholar 

  8. Mehta V, Tankeshwar K, Saini HS (2018) Li-adsorption on doped Mo2C monolayer: a novel electrode material for Li-ion batteries. AIP Conf Proc 1942:140047. https://doi.org/10.1063/1.5029178

    Article  CAS  Google Scholar 

  9. Mehta V, Tankeshwar K, Saini HS (2018) Ab-initio study of electronic and magnetic properties of Co-doped Mo2C monolayer. AIP Conf Proc 1953:030109. https://doi.org/10.1063/1.5032444

    Article  CAS  Google Scholar 

  10. Mehta V, Tankeshwar K, Saini HS (2019) Prediction of Mo2CF2 monolayer as a novel anode material for Li-ion batteries: a first principle study. AIP Conf Proc 2115:030576. https://doi.org/10.1063/1.5113415

    Article  CAS  Google Scholar 

  11. Mehta V, Tankeshwar K, Saini HS (2020) First principles study of Mo2N monolayer as potential anode material for na-ion batteries. AIP Conf Proc 2265:030658

    Article  CAS  Google Scholar 

  12. Zhou Y, Geng CA (2017) MoO2 sheet as a promising electrode material: ultrafast Li-diffusion and astonishing Li-storage capacity. Nanotechnology 28:105402. https://doi.org/10.1088/1361-6528/aa56d0

    Article  CAS  Google Scholar 

  13. Mortazavi M, Wang C, Deng JK, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286. https://doi.org/10.1016/j.jpowsour.2014.06.049

    Article  CAS  Google Scholar 

  14. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  15. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  16. Eklund P, Beckers M, Jansson U, Hogberg H, Hultman L (2010) The Mn + 1AXn phases: materials science and thin-film processing. Thin Solid Films 518:1851–1878. https://doi.org/10.1016/j.tsf.2009.07.184

    Article  CAS  Google Scholar 

  17. Sun ZM (2011) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56:143–166. https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  18. Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135:15966–15969. https://doi.org/10.1021/ja405735d

    Article  CAS  Google Scholar 

  19. Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan LM, Zhang B, Yang J, Gogotsi Y, Billinge SJL, Barsoum MW (2014) Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun 50:9517–9520. https://doi.org/10.1039/C4CC03366C

    Article  CAS  Google Scholar 

  20. Harris KJ, Bugnet M, Naguib M, Barsoum MW, Goward GR (2015) Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. J Phys Chem C 119:13713–13720. https://doi.org/10.1021/acs.jpcc.5b03038

    Article  CAS  Google Scholar 

  21. Meshkian R, Naslund L-A, Halim J, Lu J, Barsoumand MW, Rosen J (2015) Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr Mater 108:147–150. https://doi.org/10.1016/j.scriptamat.2015.07.003

    Article  CAS  Google Scholar 

  22. Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58:1244–1316. https://doi.org/10.1016/j.pmatsci.2013.04.003

    Article  CAS  Google Scholar 

  23. Mehta V, Saini HS, Srivastava S, Kashyap MK, Tankeshwar K (2019) S-functionalized Mo2C monolayer as a novel electrode material in Li-ion batteries. J Phys Chem C 123(41):25052–25060. https://doi.org/10.1021/acs.jpcc.9b05679

    Article  CAS  Google Scholar 

  24. Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, Kent PRC, Gogotsi Y, Barsoum MW (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9:9507–9516. https://doi.org/10.1021/acsnano.5b03591

    Article  CAS  Google Scholar 

  25. Hong W, Wyatt BC, Nemani SK, Anasori B (2020) Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull 45:850–861. https://doi.org/10.1557/mrs.2020.251

    Article  CAS  Google Scholar 

  26. Ma SH, Jiao ZY, Huang XF (2014) First-principles study of ceramic material (Ti1−xNbx)2AlC compounds and its compressive behavior under pressure up to 55 GPa. J Alloys Compd 591:110–116. https://doi.org/10.1016/j.jallcom.2013.12.233

    Article  CAS  Google Scholar 

  27. Wang Y, Wei W, Huang B, Dai Y (2019) Functionalized MXenes as ideal electrodes for Janus MoSSe. Phys Chem Chem Phys 21:70–76. https://doi.org/10.1039/C8CP06257A

    Article  CAS  Google Scholar 

  28. Jin W, Wu S, Wang Z (2018) Structural, electronic and mechanical properties of two-dimensional janus transition metal carbides and nitrides. Physica E 103:307–313. https://doi.org/10.1016/j.physe.2018.06.024

    Article  CAS  Google Scholar 

  29. Zhou J, Gao SH, Guo ZL, Sun ZM (2017) Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram Int 43:11450–11454. https://doi.org/10.1016/j.ceramint.2017.06.016

    Article  CAS  Google Scholar 

  30. Bentzel GW, Lane NJ, Vogel SC, An K, Barsoum MW, Caspi EN (2015) A high-temperature neutron diffraction study of Nb2AlC and TiNbAlC. J Am Ceram Soc 98:940–947. https://doi.org/10.1111/jace.13366

    Article  CAS  Google Scholar 

  31. Li Y-M, Chen W-G, Guo Y-L, Jiao Z-Y (2018) Theoretical investigations of TiNbC MXenes as anode materials for Li-ion batteries. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2018.11.140

    Article  Google Scholar 

  32. Li Y, Li L, Huang R, Zhang Y, Wen Y (2021) Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries. Nanoscale 13:2995–3001. https://doi.org/10.1039/D0NR08271F

    Article  CAS  Google Scholar 

  33. Akgenc B (2019) Intriguing of two-dimensional Janus surface-functionalized MXenes: an ab-initio calculation. Comput Mater Sci 171:109231. https://doi.org/10.1016/j.commatsci.2019.109231

    Article  CAS  Google Scholar 

  34. Liu H, Wang H, Jing Z, Wu K, Cheng Y, Xiao B (2020) Bare Mo-based ordered double-transition metal MXenes as high-performance anode materials for aluminum-ion batteries. J Phys Chem C 124(47):25769–25774. https://doi.org/10.1021/acs.jpcc.0c08901

    Article  CAS  Google Scholar 

  35. Wang H, Jing Z, Liu H, Feng X, Meng G, Wu K, Cheng Y, Xiao B (2020) A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. Nanoscale 12(48):24510–24526

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539. https://doi.org/10.1103/physrevb.54.16533

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  38. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  39. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901. https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  40. Yu M, Trinkle DR (2011) Accurate and efficient algorithm for Bader charge integration. J Chem Phys 134:064111. https://doi.org/10.1063/1.3553716

    Article  CAS  Google Scholar 

  41. Zhang Y (2017) First principles prediction of two-dimensional tungsten carbide (W2C) monolayer and its Li storage capability. Comput Condens Matter 10:35–38. https://doi.org/10.1016/j.cocom.2017.03.002

    Article  Google Scholar 

  42. Sharmaa A, Khana MS, Khanb MS, Husaina M (2021) Ab initio study of molybdenum sulfo-selenides alloy as a flexible anode for sodium-ion batteries. Appl Surf Sci 536:147973. https://doi.org/10.1016/j.apsusc.2020.147973

    Article  CAS  Google Scholar 

  43. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985. https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Pt. Deendayal Upadhyaya Innovation and Incubation Centre (PDUIIC), Guru Jambheshwar University of Science and Technology (GJUS&T), Hisar, India for providing the computational facility under RUSA grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardev S. Saini.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, V., Saini, H.S., Srivastava, S. et al. Ultralow diffusion barrier of double transition metal MoWC monolayer as Li-ion battery anode. J Mater Sci 57, 10702–10713 (2022). https://doi.org/10.1007/s10853-022-07237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07237-1

Navigation