Skip to main content

Advertisement

Log in

Optimized-dose lidocaine-loaded sulfobutyl ether β-cyclodextrin/hyaluronic acid hydrogels to improve physical, chemical, and pharmacological evaluation for local anesthetics and drug delivery systems

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Local anesthetics (LAs) are a class of drugs, which have wide applications in the treatment of post-operative pain care management. Long-acting LAs that can be given as a single dose analgesic are desperately needed. The prepared sulfobutylether β-cyclodextrin (SCD)/hyaluronic acid (HA) hydrogels were characterized by Fourier transform infrared and X-ray diffraction patterns. The as-prepared SCD/HA hydrogels greatly enhanced their swelling behavior and in vitro degradation properties. Furthermore, a scanning electron microscope reported that the surface morphology of the Lidocaine (LDC)-loaded SCD/HA hydrogels was smooth, and a significant change in porosity was observed after the addition of LDC (0.5%, 1.0%, and 1.5% w/v). The occurrence of cross-linking between the LDC and SCD/HA hydrogels was studied through rheological analysis. Approximately 94% of lidocaine (LDC) was released from the SCD/HA-LDC formulations by 24 h. The cytotoxicity of SCD/HA-LDC was studied against fibroblast (3T3) cells. SCD/HA-LDC showed a prolonged in vitro release and lower cytotoxicity when compared to free LDC. Furthermore, in vivo evaluation of the anesthetic properties in animal models showed that the SCD/HA-LDC showed a significantly prolonged analgesic effect when compared to free LDC. Moreover, the SCD/HA-LDC exhibited good biodegradability and biocompatibility in histological analyses. Overall, the findings suggest that the LDC-loaded SCD/HA hydrogels had a synergistic impact in prolonging analgesia without generating toxicity, and hence might be used as a long-acting analgesia therapeutic care.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Becker DE, Reed KL (2012) Local anesthetics: review of pharmacological considerations. Anesth Prog 59:90–102. https://doi.org/10.2344/0003-3006-59.2.90

    Article  Google Scholar 

  2. Fozzard H, Lee P, Lipkind G (2005) Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr Pharm Des 11:2671–2686. https://doi.org/10.2174/1381612054546833

    Article  CAS  Google Scholar 

  3. Ruetsch Y, Boni T, Borgeat A (2005) From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem 1:175–182. https://doi.org/10.2174/1568026013395335

    Article  Google Scholar 

  4. Bahar E, Yoon H (2021) Lidocaine: a local anesthetic, its adverse effects and management. Medicina 57:1–10. https://doi.org/10.3390/medicina57080782

    Article  Google Scholar 

  5. STRICHARTZ GR. (1981) Current concepts of the mechanism of action of local anesthetics. J Dent Res 60:1460–1470. https://doi.org/10.1177/00220345810600080904

    Article  Google Scholar 

  6. Moradkhani MR, Karimi A, Negahdari B (2018) Nanotechnology application to local anaesthesia (LA). Artif Cells Nanomed Biotechnol 46:355–360. https://doi.org/10.1080/21691401.2017.1313263

    Article  CAS  Google Scholar 

  7. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polymer J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  8. Chang SH, Custer PL, Mohadjer Y, Scott E (2009) Use of lorenz titanium implants in orbital fracture repair. Ophthalmic Plast Reconstr Surg 25:119–122. https://doi.org/10.1097/IOP.0b013e31819ac7c5

    Article  Google Scholar 

  9. Din F, ud, W, Aman A, et al (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291–7309. https://doi.org/10.2147/IJN.S146315

    Article  Google Scholar 

  10. Patra JK, Das G, Fraceto LF et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  11. Tan S, Ladewig K, Fu Q et al (2014) Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun 35:1166–1184. https://doi.org/10.1002/marc.201400080

    Article  CAS  Google Scholar 

  12. Domiński A, Konieczny T, Kurcok P (2020) A-cyclodextrin-based polypseudorotaxane hydrogels. Materials 13:1–28. https://doi.org/10.3390/ma13010133

    Article  CAS  Google Scholar 

  13. Lu L, Armstrong EA, Yager JY, Unsworth LD (2019) Sustained release of dexamethasone from sulfobutyl ether β-cyclodextrin modified self-assembling peptide nanoscaffolds in a perinatal rat model of hypoxia-ischemia. Adv Healthcare Mater 8:1–11. https://doi.org/10.1002/adhm.201900083

    Article  CAS  Google Scholar 

  14. Stella VJ, Rajewski RA (2020) Sulfobutylether-β-cyclodextrin. Int J Pharm 583:119396. https://doi.org/10.1016/j.ijpharm.2020.119396

    Article  CAS  Google Scholar 

  15. Carneiro SB, Duarte FÍC, Heimfarth L et al (2019) Cyclodextrin-drug inclusion complexes: in vivo and in vitro approaches. Int J Mol Sci 20:1–23. https://doi.org/10.3390/ijms20030642

    Article  CAS  Google Scholar 

  16. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8:3280–3294. https://doi.org/10.1039/C2SM06463D

    Article  CAS  Google Scholar 

  17. Khan R, Mahendhiran B, Aroulmoji V (2013) Chemistry of hyaluronic acid and its significance in drug delivery strategies: a review. Int J Pharm Sci Res 4:3699–3710. https://doi.org/10.13040/IJPSR.0975-8232.4(10).3699-10

    Article  CAS  Google Scholar 

  18. Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermato-Endocrinol 4:253–258. https://doi.org/10.4161/derm.21923

    Article  CAS  Google Scholar 

  19. Gupta RC, Lall R, Srivastava A, Sinha A (2019) Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci 6:1–24. https://doi.org/10.3389/fvets.2019.00192

    Article  Google Scholar 

  20. Xu X, Jha AK, Harrington DA et al (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8:3280–3294. https://doi.org/10.1039/c2sm06463d

    Article  CAS  Google Scholar 

  21. Fakhari A, Berkland C (2013) Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler, and in osteoarthritis treatment. Acta Biomater 9:7081–7092. https://doi.org/10.1016/j.actbio.2013.03.005

    Article  CAS  Google Scholar 

  22. Kotla NG, Bonam SR, Rasala S et al (2021) Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 336:598–620. https://doi.org/10.1016/j.jconrel.2021.07.002

    Article  CAS  Google Scholar 

  23. Venuti V, Cannavà C, Cristiano MC et al (2014) A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surf B 115:22–28. https://doi.org/10.1016/j.colsurfb.2013.11.025

    Article  CAS  Google Scholar 

  24. De Oliveira SA, da Silva BC, Riegel-Vidotti IC et al (2017) Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int J Biol Macromol 97:642–653. https://doi.org/10.1016/j.ijbiomac.2017.01.077

    Article  CAS  Google Scholar 

  25. Bokatzian-Johnson SS, Stover ML, Dixon DA, Cassady CJ (2012) A comparison of the effects of amide and acid groups at the c-terminus on the collision-induced dissociation of deprotonated peptides. J Am Soc Mass Spectrom 23:1544–1557. https://doi.org/10.1007/s13361-012-0431-x

    Article  CAS  Google Scholar 

  26. Giubertoni G, Burla F, Martinez-Torres C et al (2019) Molecular origin of the elastic state of aqueous hyaluronic acid. J Phys Chem B 123:3043–3049. https://doi.org/10.1021/acs.jpcb.9b00982

    Article  CAS  Google Scholar 

  27. Jain AS, Date AA, Pissurlenkar RRS et al (2011) Sulfobutyl ether 7 β-cyclodextrin (SBE 7 β-CD) carbamazepine complex: preparation, characterization, molecular modeling, and evaluation of in vivo anti-epileptic activity. AAPS PharmSciTech 12:1163–1175. https://doi.org/10.1208/s12249-011-9685-z

    Article  CAS  Google Scholar 

  28. Nagashima S, Morita Y, Miyazaki T et al (2010) Fabrication of apatite-hyaluronic acid hybrids. Bioceram Dev Appl 1:1–3. https://doi.org/10.4303/bda/d110117

    Article  Google Scholar 

  29. Khunmanee S, Jeong Y, Park H (2017) Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. https://doi.org/10.1177/2041731417726464

    Article  Google Scholar 

  30. Carbinatto FM, de Castro AD, Evangelista RC, Cury BSF (2014) Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci 9:27–34. https://doi.org/10.1016/j.ajps.2013.12.002

    Article  Google Scholar 

  31. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  32. Kowalski G, Kijowska K, Witczak M et al (2019) Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers 11:1–16. https://doi.org/10.3390/polym11010114

    Article  CAS  Google Scholar 

  33. Kong HJ, Alsberg E, Kaigler D, Lee KY, Mooney DJ (2004) Controlling degradation of hydrogels via the size of crosslinked junctions. Adv Matter 16:1917–1921. https://doi.org/10.1002/adma.200400014

    Article  CAS  Google Scholar 

  34. Li Y, Zhao E, Li L et al (2021) Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete in vitro and in vivo toxicity analyses. Drug Delivery 28:1080–1092. https://doi.org/10.1080/10717544.2021.1931558

    Article  CAS  Google Scholar 

  35. Patterson J, Siewa R, Herring SW, Lin ASP, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781. https://doi.org/10.1016/j.biomaterials.2010.05.047

    Article  CAS  Google Scholar 

  36. Cuccia NL, Pothineni S, Wu B et al (2020) Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc Natl Acad Sci USA 117:11247–11256. https://doi.org/10.1073/pnas.1922364117

    Article  CAS  Google Scholar 

  37. Li X, Sun Q, Li Q et al (2018) Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem 6:1–20. https://doi.org/10.3389/fchem.2018.00499

    Article  CAS  Google Scholar 

  38. Song X, Zhu C, Fan D et al (2017) A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties. Polymers 9:1–16. https://doi.org/10.3390/polym9120638

    Article  CAS  Google Scholar 

  39. Bialik-Wąs K, Królicka E, Malina D (2021) Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(vinyl alcohol) hydrogels. Molecules 26:7–10. https://doi.org/10.3390/molecules26082381

    Article  CAS  Google Scholar 

  40. Kokol V, Pottathara YB, Mihelčič M, Perše LS (2021) Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling rates during 3D cryo-printing. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2021.126356

    Article  Google Scholar 

  41. Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4:1517–1534. https://doi.org/10.3390/polym4031517

    Article  CAS  Google Scholar 

  42. Mithra K, Khandai S, Mishra B, Jena SS (2018) Effect of polymer concentration on structure and rheology of poly (sodium acrylate) hydrogels. AIP Conf Proc. https://doi.org/10.1063/1.5028618

    Article  Google Scholar 

  43. Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromol 8:1109–1115. https://doi.org/10.1021/bm0610065

    Article  CAS  Google Scholar 

  44. Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD (2009) Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosci 9:20–28. https://doi.org/10.1002/mabi.200800141

    Article  CAS  Google Scholar 

  45. Panja S, Seddon A, Adams DJ (2021) Controlling hydrogel properties by tuning non-covalent interactions in a charge complementary multicomponent system. Chem Sci. https://doi.org/10.1039/d1sc02854e

    Article  Google Scholar 

  46. Vigata M, Meinert C, Hutmacher DW, Bock N (2020) Hydrogels as drug delivery systems: a review of current characterization and evaluation techniques. Pharmaceutics 12:1–45. https://doi.org/10.3390/pharmaceutics12121188

    Article  CAS  Google Scholar 

  47. Mateen R, Hoare T (2014) Injectable, in situ gelling, cyclodextrin-dextran hydrogels for the partitioning-driven release of hydrophobic drugs. J Mater Chem B 2:5157–5167. https://doi.org/10.1039/c4tb00631c

    Article  CAS  Google Scholar 

  48. Medeiros Salviano Santos MK, Sousa MH, Chaker JA (2021) Drug dual-release matrix proprieties and the correlations with nanostructure aggregation kinetics for siloxane-polyether/hydrogel nanocomposites. RSC Adv 11:3863–3869. https://doi.org/10.1039/d0ra08270h

    Article  CAS  Google Scholar 

  49. Santos A, Sinn Aw M, Bariana M et al (2014) Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B 2:6157–6182. https://doi.org/10.1039/c4tb00548a

    Article  CAS  Google Scholar 

  50. Choi SG, Lee SE, Kang BS et al (2014) Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-β-cyclodextrin for buccal delivery. PLoS ONE. https://doi.org/10.1371/journal.pone.0109090

    Article  Google Scholar 

  51. Farnoud AM, Nazemidashtarjandi S (2019) Emerging investigator series: interactions of engineered nanomaterials with the cell plasma membrane; What have we learned from membrane models? Environ Sci Nano 6:13–40. https://doi.org/10.1039/C8EN00514A

    Article  CAS  Google Scholar 

  52. Cheng C, Zhang X, Meng Y et al (2017) Development of a dual drug-loaded hydrogel delivery system for enhanced cancer therapy: in situ formation, degradation and synergistic antitumor efficiency. J Mater Chem B 5:8487–8497. https://doi.org/10.1039/c7tb02173a

    Article  CAS  Google Scholar 

  53. Santamaria CM, Woodruff A, Yang R, Kohane DS (2017) Drug delivery systems for prolonged duration local anesthesia. Mater Today 20:22–31. https://doi.org/10.1016/j.mattod.2016.11.019

    Article  CAS  Google Scholar 

  54. Bagshaw KR, Hanenbaum CL, Carbone EJ et al (2015) Pain management via local anesthetics and responsive hydrogels. Ther Deliv 6:165–176. https://doi.org/10.4155/tde.14.95

    Article  CAS  Google Scholar 

  55. Keyhanfar F, Meymandi MS, Sepehri G et al (2013) Evaluation of antinociceptive effect of pregabalin in mice and its combination with tramadol using tail flick test. Iran J Pharm Res 12:483–493. https://doi.org/10.22037/ijpr.2013.1340

    Article  CAS  Google Scholar 

  56. Vermeirsch H, Meert TF (2004) Morphine-induced analgesia in the hot-plate test: comparison between NMRInu/nu and NMRI mice. Basic Clin Pharmacol Toxicol 94:59–64. https://doi.org/10.1111/j.1742-7843.2004.pto940202.x

    Article  CAS  Google Scholar 

  57. Benaouda F, Jones SA, Martin GP, Brown MB (2016) Localized epidermal drug delivery induced by supramolecular solvent structuring. Mol Pharm 13:65–72. https://doi.org/10.1021/acs.molpharmaceut.5b00499

    Article  CAS  Google Scholar 

  58. Wang Y, Wu Y, Long L et al (2021) Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment. ACS Appl Mater Interfaces 13:33584–33599. https://doi.org/10.1021/acsami.1c09889

    Article  CAS  Google Scholar 

  59. Thackaberry EA, Farman C, Zhong F et al (2017) Evaluation of the toxicity of intravitreally injected PLGA microspheres and rods in monkeys and rabbits: effects of depot size on inflammatory response. Invest Ophthalmol Vis Sci 58:4274–4285. https://doi.org/10.1167/iovs.16-21334

    Article  CAS  Google Scholar 

  60. Chen MJ, Lu Y, Simpson NE et al (2015) In situ transplantation of alginate bioencapsulated adipose tissues derived stem cells (ADSCs) via hepatic injection in a mouse model. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0138184

    Article  CAS  Google Scholar 

  61. Chen H, Cheng R, Zhao X et al (2019) An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Mater. https://doi.org/10.1038/s41427-018-0103-9

    Article  Google Scholar 

  62. Sun G, Zhang X, Shen YI, et al (2011) Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the national academy of sciences of the United States of America 108:20976–20981https://doi.org/10.1073/pnas.1115973108

  63. Madaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2:153–161. https://doi.org/10.4103/2321-3868.143616

    Article  Google Scholar 

  64. Ruela ALM, Perissinato AG, de Lino ME, S, et al (2016) Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci 52:527–544. https://doi.org/10.1590/s1984-82502016000300018

    Article  CAS  Google Scholar 

  65. Liu C, Ma Y, Guo S et al (2021) Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence. Biomater Sci 9:4356–4363. https://doi.org/10.1039/d0bm01766c

    Article  CAS  Google Scholar 

  66. Marianecci C, Carafa M, di Marzio L et al (2011) A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization. J Pharm Pharm Sci 14:336–346

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the testing technicians for their technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Tao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, LY., Wang, YH., Pan, RR. et al. Optimized-dose lidocaine-loaded sulfobutyl ether β-cyclodextrin/hyaluronic acid hydrogels to improve physical, chemical, and pharmacological evaluation for local anesthetics and drug delivery systems. J Mater Sci 57, 7068–7084 (2022). https://doi.org/10.1007/s10853-022-07072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07072-4

Navigation