Skip to main content

Advertisement

Log in

Evaluation of poly (L-lactic acid) monofilaments with high mechanical performance in vitro degradation

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nowadays, the degradation properties of poly (L-lactic acid) (PLLA) braided stents are still not well understood. The main challenge relies on the unknown degradation behavior of the PLLA monofilaments, which is the fundamental element of the braided stent. In this paper, the solid-state drawn PLLA monofilament in vitro degradation has been studied. A one-year experiment data was conducted to evaluate degradation properties, including the mass loss, morphology, characterization, and mechanical properties. Within the first 3 months, changes in the mass loss, crystallinity, and mechanical performance of the monofilament were very gentle. The monofilament molecular weight was significantly reduced after each degradation stage and decreased by more than 90% at the end of the one-year degradation. Moreover, the mechanical properties of the annealed monofilament were retained better than that of the unannealed monofilament after 6 months. Therefore, this study may provide preliminary experimental references for evaluating the degradation performance of PLLA braided stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhao G et al (2021) Effects of constraint between filaments on the radial compression properties of poly (l-lactic acid) self-expandable braided stents. Polym Testing 93:106963

    Article  CAS  Google Scholar 

  2. Zhao G et al (2021) Poly(l-lactic acid) monofilaments for biodegradable braided self-expanding stent. J Mater Sci 56(21):12383–12393. https://doi.org/10.1007/s10853-021-06021-x

    Article  CAS  Google Scholar 

  3. Bobel AC, Lohfeld S, Shirazi RN, McHugh PE (2016) Experimental mechanical testing of Poly (l-Lactide) (PLLA) to facilitate pre-degradation characteristics for application in cardiovascular stenting. Polym Test 54:150–158

    Article  CAS  Google Scholar 

  4. Cicero JA, Dorgan JR (2001) Physical properties and fiber morphology of poly (lactic acid) obtained from continuous two-step melt spinning. J Polym Environ 9:1–10

  5. Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C (1997) Biodegradable fibres of poly (L-lactic acid) produced by melt spinning. Polymer 38:79–85

  6. Fuoco T, Mathisen T, Finne-Wistrand A (2019) Poly(l-lactide) and poly(l-lactide- co-trimethylene carbonate) melt-spun fibers: structure-processing-properties relationship. Biomacromol 20(3):1346–1361

    Article  CAS  Google Scholar 

  7. Mai F, Tu W, Bilotti E, Peijs T (2015) The influence of solid-state drawing on mechanical properties and hydrolytic degradation of melt-spun poly(Lactic Acid) (PLA) Tapes. Fibers 3(4):523–538

    Article  CAS  Google Scholar 

  8. Im SH, Kim CY, Jung Y, Jang Y, Kim SH (2017) Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Biomater Sci 5(3):422–431

    Article  CAS  Google Scholar 

  9. Tian Y, Liu M, Cheng J, Zhao G (2021) Preparation of a poly(L-latic acid) braided stent with high radial force. J Phys Conf Ser 3:1885

    Google Scholar 

  10. Welch TR, Eberhart RC, Reisch J, Chuong C-J (2014) Influence of thermal annealing on the mechanical properties of PLLA coiled stents. Cardiovasc Eng Technol 5(3):270–280

    Article  Google Scholar 

  11. Li X et al (2021) Effects of annealing constraint methods on poly(L-lactic acid) monofilaments for application in stents annealing. Polym Adv Technol 32:2378

    Article  CAS  Google Scholar 

  12. Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123(7):779–797

    Article  Google Scholar 

  13. Shi D et al (2018) A comparative study on in vitro degradation behavior of PLLA-based copolymer monofilaments. Polym Degrad Stab 158:148–156

    Article  CAS  Google Scholar 

  14. Weir NA, Buchanan FJ, Orr JF, Farrar DF, Boyd A (2004) Processing, annealing and sterilisation of poly-l-lactide. Biomaterials 25(18):3939–3949

    Article  CAS  Google Scholar 

  15. Migliaresi C, Fambri L, Cohn D (1994) A study on the in vitro degradation of poly(lactic acid). J Biomater Sci Polym Ed 5(6):591–606

    Article  CAS  Google Scholar 

  16. Khalaj Amnieh S, Mosaddegh P, Mashayekhi M, Kharaziha M (2020) Biodegradation evaluation of poly (lactic acid) for stent application: Role of mechanical tension and temperature. J Appl Polym Sci 138(19):50389

    Article  Google Scholar 

  17. McMahon S et al (2018) Bio-resorbable polymer stents: a review of material progress and prospects. Prog Polym Sci 83:79–96

    Article  CAS  Google Scholar 

  18. Gogas BD, Farooq V, Onuma Y, Serruys PW (2012) The ABSORB bioresorbable vascular scaffold: an evolution or revolution in interventional cardiology. Hellenic J Cardiol 53:301–309

  19. Zhao G et al (2021) A study of the radial and bending performance for poly (L-lactic acid) braided stents with innovative runners. Polym Adv Technol. https://doi.org/10.1002/pat.5461

    Article  Google Scholar 

  20. Tian Y et al (2021) Effects of annealing temperature on both radial supporting performance and axial flexibility of poly(L-lactic acid) braided stents. J Appl Polym Sci. https://doi.org/10.1002/app.50517

    Article  Google Scholar 

  21. Coumel P, Maison‐Blanche PI, Catuli D (1994) Heart rate and heart rate variability in normal young adults. J Cardiovas Electrophysiol 5:899–911

  22. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

  23. Laycock B et al (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189

    Article  CAS  Google Scholar 

  24. Bink N, Mohan VB, Fakirov S (2019) Recent advances in plastic stents: a comprehensive review. Int J Polym Mater Polym Biomater 70(1):54–74

    Article  Google Scholar 

  25. Liu T, Mo Z, Wang S, Zhang H (1995) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

  26. Liu T, Mo Z, Zhang H (1998) Nonisothermal crystallization behavior of a novel poly (aryl ether ketone): PEDEKmK. J Appl Polym Sci 67:815–821

  27. Li Y, Han C (2012) Isothermal and nonisothermal cold crystallization behaviors of asymmetric poly(l-lactide)/poly(d-lactide) blends. Ind Eng Chem Res 51(49):15927–15935

    Article  CAS  Google Scholar 

  28. Yu J, Qiu Z (2011) Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(l-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 50(22):12579–12586

    Article  CAS  Google Scholar 

  29. Wunderlich B (1958) Theory of cold crystallization of high polymers. J Chem Phys 29(6):1395–1404

    Article  CAS  Google Scholar 

  30. Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104(1):310–317

    Article  CAS  Google Scholar 

  31. Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer. Polym Bull 70(9):2569–2586

    Article  CAS  Google Scholar 

  32. Naffakh M, Marco C, Ellis G (2015) Non-isothermal cold-crystallization behavior and kinetics of Poly(l-Lactic Acid)/WS2 inorganic nanotube nanocomposites. Polymers 7(11):2175–2189

    Article  CAS  Google Scholar 

  33. Li Y, Han C, Yu Y, Xiao L, Shao Y (2017) Isothermal and nonisothermal cold crystallization kinetics of poly(l-lactide)/functionalized eggshell powder composites. J Therm Anal Calorim 131(3):2213–2223

    Article  Google Scholar 

  34. Ailianou A, Ramachandran K, Kossuth MB, Oberhauser JP, Kornfield JA (2016) Multiplicity of morphologies in poly (l-lactide) bioresorbable vascular scaffolds. Proc Natl Acad Sci U S A 113(42):11670–11675

    Article  CAS  Google Scholar 

  35. Wang PJ, Ferralis N, Conway C, Grossman JC, Edelman ER (2018) Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc Natl Acad Sci U S A 115(11):2640–2645

    Article  CAS  Google Scholar 

  36. Ramachandran K, Di Luccio T, Ailianou A, Kossuth MB, Oberhauser JP, Kornfield JA (2018) Crimping-induced structural gradients explain the lasting strength of poly l-lactide bioresorbable vascular scaffolds during hydrolysis. Proc Natl Acad Sci U S A 115(41):10239–10244

    Article  CAS  Google Scholar 

  37. Tian Y et al (2020) A poly(L-lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J Appl Polym Sci. https://doi.org/10.1002/app.49656

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Programme of China (No. 2018YFA0704102), the National Natural Science Foundation of China (Grant Nos. 51775107 and 51905276).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juekuan Yang or Zhonghua Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Wang, B., Li, X. et al. Evaluation of poly (L-lactic acid) monofilaments with high mechanical performance in vitro degradation. J Mater Sci 57, 6361–6371 (2022). https://doi.org/10.1007/s10853-022-07049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07049-3

Navigation