Skip to main content
Log in

Experimental and DFT-D3 study of sensitivity and sensing mechanism of ZnSnO3 nanosheets to C3H6O gas

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To find a new type of sensing material with high sensitivity to acetone gas, in this paper, a first-principles method based on density functional theory was used to study the gas-sensing mechanism of perovskite-type ZnSnO3 to acetone. A hydrothermal method was used to prepare perovskite-type ZnSnO3, and perform a gas sensitivity test. Calculated results demonstrate that acetone molecules interacted strongly with the ZnSnO3(001) surface with pre-adsorbed O2 and O, accompanied by charge transfer that can change the resistance of the material. This phenomenon provides the basis for using ZnSnO3 as an acetone gas-sensitive sensing material. The experimental results showed that the perovskite-type ZnSnO3 has a sheet structure with micro-holes on the surface, which can promote responsivity to acetone gas. The gas sensitivity test indicated the optimal operating temperature is 350 °C, the response/recovery time is 4 s/27 s. The sensitivities of the synthesized ZnSnO3 nanosheet that in this paper to 100 ppm and 10 ppm acetone gas are 125.444 and 8.37, respectively. In the five-week stability and repeatability test, the sensitivity to 10/100 ppm acetone of sheet-like ZnSnO3 sensor could still maintain at 89.64% and 94.74% of the first test result. This study provides theoretical guidance for the development of acetone gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Mo Y, Li H, Zhou K et al (2019) Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: a density functional theory (DFT) study. Appl Surf Sci 469:962. https://doi.org/10.1016/j.apsusc.2018.11.079

    Article  CAS  Google Scholar 

  2. Wang CC, Weng YC, Chou TC (2007) Acetone sensor using lead foil as working electrode. Sens Actuators B Chem 122:591. https://doi.org/10.1016/j.snb.2006.07.003

    Article  CAS  Google Scholar 

  3. Liu F, Chu X, Dong Y, Zhang W, Sun W, Shen L (2013) Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens Actuators B Chem 188:469. https://doi.org/10.1016/j.snb.2013.06.065

    Article  CAS  Google Scholar 

  4. Patil SB, Patil PP, More MA (2007) Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films. Sens Actuators B Chem 125:126. https://doi.org/10.1016/j.snb.2007.01.047

    Article  CAS  Google Scholar 

  5. Mehaney A, Ahmed AM (2020) Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Phys E Low Dimens Syst Nanostruct. https://doi.org/10.1016/j.physe.2020.114353

    Article  Google Scholar 

  6. Ahmed AM, Mehaney A (2019) Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9:6973. https://doi.org/10.1038/s41598-019-43440-y

    Article  CAS  Google Scholar 

  7. Dai J, Ogbeide O, Macadam N et al (2020) Printed gas sensors. Chem Soc Rev 49:1756. https://doi.org/10.1039/c9cs00459a

    Article  CAS  Google Scholar 

  8. Zhao J, Huo LH, Gao S, Zhao H, Zhao JG (2006) Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating. Sens Actuators B Chem 115:460. https://doi.org/10.1016/j.snb.2005.10.024

    Article  CAS  Google Scholar 

  9. Kim DH, Jang JS, Koo WT, Choi SJ, Kim SJ, Kim ID (2018) Hierarchically interconnected porosity control of catalyst-loaded WO3 nanofiber scaffold: superior acetone sensing layers for exhaled breath analysis. Sens Actuators B Chem 259:616. https://doi.org/10.1016/j.snb.2017.12.051

    Article  CAS  Google Scholar 

  10. Nakate UT, Ahmad R, Patil P, Yu YT, Hahn YB (2020) Ultra thin NiO nanosheets for high performance hydrogen gas sensor device. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144971

    Article  Google Scholar 

  11. Jin X, Li Y, Zhang B, Xu X, Sun G, Wang Y (2021) Temperature-dependent dual selectivity of hierarchical porous In2O3 nanospheres for sensing ethanol and TEA. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2020.129271

    Article  Google Scholar 

  12. Tanvir NB, Yurchenko O, Laubender E, Urban G (2017) Investigation of low temperature effects on work function based CO2 gas sensing of nanoparticulate CuO films. Sens Actuators B Chem 247:968. https://doi.org/10.1016/j.snb.2016.11.020

    Article  CAS  Google Scholar 

  13. Chen Y, Qin H, Wang X, Li L, Hu J (2016) Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sens Actuators B Chem 235:56. https://doi.org/10.1016/j.snb.2016.05.059

    Article  CAS  Google Scholar 

  14. Peng Y, Si W, Li J, Crittenden J, Hao J (2015) Experimental and DFT studies on Sr-doped LaMnO3 catalysts for NOx storage and reduction. Catal Sci Technol 5:2478. https://doi.org/10.1039/c5cy00073d

    Article  CAS  Google Scholar 

  15. Han T, Ma S, Yun P et al (2021) Synthesis and characterization of Ho-doped SmFeO3 nanofibers with enhanced glycol sensing properties. Vacuum. https://doi.org/10.1016/j.vacuum.2021.110378

    Article  Google Scholar 

  16. Wang Z, Miao J, Zhang H, Wang D, Sun J (2020) Hollow cubic ZnSnO3 with abundant oxygen vacancies for H2S gas sensing. J Hazard Mater 391:122226. https://doi.org/10.1016/j.jhazmat.2020.122226

    Article  CAS  Google Scholar 

  17. Guo H, Chen H, Zhang H et al (2019) Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency. Nano Energy 59:1. https://doi.org/10.1016/j.nanoen.2019.01.059

    Article  CAS  Google Scholar 

  18. Biausque G, Schuurman Y (2010) The reaction mechanism of the high temperature ammonia oxidation to nitric oxide over LaCoO3. J Catal 276:306. https://doi.org/10.1016/j.jcat.2010.09.022

    Article  CAS  Google Scholar 

  19. Lee YL, Kleis J, Rossmeisl J, Morgan D (2009) Ab initioenergetics of LaBO3 (001) (B=Mn, Fe Co, and Ni) for solid oxide fuel cell cathodes. Phys Rev B. https://doi.org/10.1103/PhysRevB.80.224101

    Article  Google Scholar 

  20. Jonathan H, Reshma RR, Livia G, Yu K, Yang Y, Yang SH (2017) Perovskites in catalysis and electrocatalysis. Science 358:751

    Article  Google Scholar 

  21. Zhou Y, Lü Z, Li J, Xu S, Xu D, Wei B (2021) The electronic properties and structural stability of LaFeO3 oxide by niobium doping: a density functional theory study. Int J Hydrog Energy 46:9193. https://doi.org/10.1016/j.ijhydene.2020.12.202

    Article  CAS  Google Scholar 

  22. Li X, Zhao H, Xu N, Zhou X, Zhang C, Chen N (2009) Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells. Int J Hydrog Energy 34:6407. https://doi.org/10.1016/j.ijhydene.2009.05.079

    Article  CAS  Google Scholar 

  23. Shaban M, Rabia M, Eldakrory MG, Maree RM, Ahmed AM (2020) Efficient photoselectrochemical hydrogen production utilizing of APbI3 (A = Na, Cs, and Li) perovskites nanorods. Int J Energy Res 45:7436. https://doi.org/10.1002/er.6326

    Article  CAS  Google Scholar 

  24. Balamurugan C, Song SJ, Lee DW (2018) Porous nanostructured GdFeO3 perovskite oxides and their gas response performance to NOx. Sens Actuators B Chem 272:400. https://doi.org/10.1016/j.snb.2018.05.125

    Article  CAS  Google Scholar 

  25. Ghasdi M, Alamdari H (2010) CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling. Sens Actuators B Chem 148:478. https://doi.org/10.1016/j.snb.2010.05.056

    Article  CAS  Google Scholar 

  26. Chaudhari GN, Jagtap SV, Gedam NN, Pawar MJ, Sangawar VS (2009) Sol-gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor. Talanta 78:1136. https://doi.org/10.1016/j.talanta.2009.01.030

    Article  CAS  Google Scholar 

  27. Chen Y, Qin H, Shi C, Li L, Hu J (2015) High temperature CO2 sensing properties and mechanism of nanocrystalline LaCrO3 with rhombohedral structure: experiments and ab initio calculations. RSC Adv 5:54710. https://doi.org/10.1039/c5ra05081b

    Article  CAS  Google Scholar 

  28. Xie C, Zhu B, Sun Y, Song W, Xu M (2021) Effect of doping Cr on NH3 adsorption and NO oxidation over the FexOy/AC surface: a DFT-D study. J Hazard Mater 416:125798. https://doi.org/10.1016/j.jhazmat.2021.125798

    Article  CAS  Google Scholar 

  29. Li X, Gao H (2020) Influence of Ce doping on catalytic oxidation of NO on LaCoO3 (011) surface: a DFT study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.143866

    Article  Google Scholar 

  30. Wu M, Chen S, Xiang W (2020) Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124101

    Article  Google Scholar 

  31. Choi KH, Siddiqui GU, Yang B-s, Mustafa M (2015) Synthesis of ZnSnO3 nanocubes and thin film fabrication of (ZnSnO3/PMMA) composite through electrospray deposition. J Mater Sci Mater Electron 26:5690. https://doi.org/10.1007/s10854-015-3121-1

    Article  CAS  Google Scholar 

  32. Gou H, Gao F, Zhang J (2010) Structural identification, electronic and optical properties of ZnSnO3: first principle calculations. Comput Mater Sci 49:552. https://doi.org/10.1016/j.commatsci.2010.05.049

    Article  CAS  Google Scholar 

  33. Honer CJ, Prosniewski MJ, Putatunda A, Singh DJ (2017) Properties of the antiferromagnetic selenite MnSeO3 and its non-magnetic analogue ZnSnO3 from first principles calculations. J Phys Condens Matter 29:405501. https://doi.org/10.1088/1361-648X/aa7f89

    Article  CAS  Google Scholar 

  34. Xu J, Jia X, Lou X, Shen J (2006) One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles. Solid-State Electron 50:504. https://doi.org/10.1016/j.sse.2006.02.001

    Article  CAS  Google Scholar 

  35. Guo W, Liu T, Yu W, Huang L, Chen Y, Wang Z (2013) Rapid selective detection of formaldehyde by hollow ZnSnO3 nanocages. Phys E Low Dimens Syst Nanostruct 48:46. https://doi.org/10.1016/j.physe.2012.11.021

    Article  CAS  Google Scholar 

  36. Wadkar P, Bauskar D, Patil P (2013) High performance H2 sensor based on ZnSnO3 cubic crystallites synthesized by a hydrothermal method. Talanta 105:327. https://doi.org/10.1016/j.talanta.2012.10.051

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  38. Blochl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50:17953. https://doi.org/10.1103/physrevb.50.17953

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  40. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  42. Wang V, Xu N, Liu JC, Tang G, Geng WT, (2019) VASPKIT: A User-Friendly Interface Facilitating High-throughput Computing and Analysis Using VASP Code. http://arxiv.org/abs/arXiv:1908.08269

  43. Habibi MH, Mardani M (2017) Synthesis and characterization of bi-component ZnSnO3/Zn2SnO4 (perovskite/spinel) nano-composites for photocatalytic degradation of Intracron Blue: Structural, opto-electronic and morphology study. J Mol Liq 238:397. https://doi.org/10.1016/j.molliq.2017.05.011

    Article  CAS  Google Scholar 

  44. Sadeghian Lemraski M, Nadimi E (2017) Acetone gas sensing mechanism on zinc oxide surfaces: a first principles calculation. Surf Sci 657:96. https://doi.org/10.1016/j.susc.2016.11.013

    Article  CAS  Google Scholar 

  45. Liu X, Hu J, Cheng B, Qin H, Zhao M, Yang C (2009) First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens Actuators B Chem 139:520. https://doi.org/10.1016/j.snb.2009.03.052

    Article  CAS  Google Scholar 

  46. Chen X, Tan C, Yang Q et al (2016) Ab initio study of the adsorption of small molecules on stanene. J Phys Chem C 120:13987. https://doi.org/10.1021/acs.jpcc.6b04481

    Article  CAS  Google Scholar 

  47. Singh-Miller NE, Marzari N (2009) Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys Rev B. https://doi.org/10.1103/PhysRevB.80.235407

    Article  Google Scholar 

  48. Sun L, Li G, Chen W, Luo F, Hu J, Qin H (2014) Adsorption of CO on the LaCoO3 (001) surface by density functional theory calculation. Appl Surf Sci 309:128. https://doi.org/10.1016/j.apsusc.2014.04.202

    Article  CAS  Google Scholar 

  49. Dong S, Xia L, Chen X et al (2021) Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos B Eng. https://doi.org/10.1016/j.compositesb.2021.108765

    Article  Google Scholar 

  50. Sharma A, Tomar M, Gupta V (2013) A low temperature operated NO2 gas sensor based on TeO2/SnO2 p–n heterointerface. Sens Actuators B Chem 176:875. https://doi.org/10.1016/j.snb.2012.09.029

    Article  CAS  Google Scholar 

  51. Han D, Zhao M (2020) Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152406

    Article  Google Scholar 

  52. Kohli N, Hastir A, Kumari M, Singh RC (2020) Hydrothermally synthesized heterostructures of In2O3/MWCNT as acetone gas sensor. Sens Actuator A Phys. https://doi.org/10.1016/j.sna.2020.112240

    Article  Google Scholar 

  53. Liu C, Zhao L, Wang B et al (2017) Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J Colloid Interface Sci 495:207. https://doi.org/10.1016/j.jcis.2017.01.106

    Article  CAS  Google Scholar 

  54. Zhang Z, Wen Z, Ye Z, Zhu L (2015) Gas sensors based on ultrathin porous Co3O4 nanosheets to detect acetone at low temperature. RSC Adv 5:59976. https://doi.org/10.1039/c5ra08536e

    Article  CAS  Google Scholar 

  55. Song H, Yang H, Ma X (2013) A comparative study of porous ZnO nanostructures synthesized from different zinc salts as gas sensor materials. J Alloys Compd 578:272. https://doi.org/10.1016/j.jallcom.2013.05.211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (51764039, 52064036), Basic Public Welfare Research Project of Zhejiang Province (LQ19E040006), and State key laboratory of advanced processing and recycling of non-ferrous metals, Lanzhou University of Technology (SKLAB02019013), Lanzhou Talent Innovation and Entrepreneurship Project (2021-RC-36). "Innovation Star" Project for Outstanding Postgraduates in Lanzhou City (2021CXZX-436)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Jiang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of this paper.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Chen, Z., Cui, Q. et al. Experimental and DFT-D3 study of sensitivity and sensing mechanism of ZnSnO3 nanosheets to C3H6O gas. J Mater Sci 57, 1–21 (2022). https://doi.org/10.1007/s10853-021-06855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06855-5

Navigation