Skip to main content
Log in

Microstructure and hardness evolution of ERNiCrMo-3 deposited metal during aging at 750 °C

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and hardness evolution of ERNiCrMo-3 deposited metal exposed at 750 °C have been investigated in this study. In the as-welded sample, the MC/TiN, Laves, and \( \delta \) phase can be found in the interdendritic regions, but only MC/TiN phase located at the grain boundaries. After the aging treatment, additional M23C6 carbides can be observed at the grain boundaries and nano-sized γ″ particles formed in the matrix. Both \( \delta \) phase and γ″ phase were found to possess one certain orientation relationship and semi-coherent interfaces with the matrix, which are responsible for the hardening of the deposited metal during the initial stage of aging. With the increase in aging time from 10 to 100 h, γ″ phase coarsens, but needle-like \( \delta \) phase becomes denser and longer, which contributes to the successive hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Ruiz-Vela JI, Montes-Rodríguez JJ, Rodríguez-Morales E, Toscano-Giles JA (2019) Effect of cold metal transfer and gas tungsten arc welding processes on the metallurgical and mechanical properties of Inconel® 625 weldings. Welding World 63(2):459–479

    Article  CAS  Google Scholar 

  2. Cao M, Fu C, Cao J, Deng Q, Lei Q, Yan L (2020) Effects of solid solution elements on microstructures and radiation resistance of binary nickel based alloys. Nucl Tech 43(5):50606–050606

    Google Scholar 

  3. Nathal MV, Maier RD, Ebert LJ (1982) The influence of cobalt on the tensile and stress-rupture properties of the nickel-base superalloy mar-m247. Metall Trans A 13(10):1767–1774

    Article  CAS  Google Scholar 

  4. Ozgun O, Gulsoy HO, Yilmaz R, Findik F (2013) Injection molding of nickel based 625 superalloy: Sintering, heat treatment, microstructure and mechanical properties. J Alloy Compd 546:192–207

    Article  CAS  Google Scholar 

  5. Paul CP, Ganesh P, Mishra SK, Bhargava P, Negi J, Nath AK (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39(4):800–805

    Article  Google Scholar 

  6. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater Sci Eng, A 509(1):98–104

    Article  Google Scholar 

  7. Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288(2):222–232

    Article  CAS  Google Scholar 

  8. Garzarolli F, Francke KP, Fischer J (1969) Influence of neutron irradiation on tensile and stress rupture properties of inconel 625. J Nucl Mater 30(1):242–246

    Article  CAS  Google Scholar 

  9. De Oliveira M, Couto A, Almeida G, Reis D, Lima N, Baldan R (2019) Mechanical behavior of inconel 625 at elevated temperatures. Metals 9:301

    Article  Google Scholar 

  10. Suave LM, Cormier J, Villechaise P, Soula A, Hervier Z, Bertheau D, Laigo J (2014) Microstructural evolutions during thermal aging of alloy 625: Impact of temperature and forming process. Metall Mater Trans A 45(7):2963–2982

    Article  CAS  Google Scholar 

  11. Shaikh MA, Ahmad M, Shoaib KA, Akhter JI, Iqbal M (2000) Precipitation hardening in inconel* 625. Mater Sci Technol 16(2):129–132

    Article  CAS  Google Scholar 

  12. Xu F, Lv Y, Liu Y, Xu B, He P (2013) Effect of heat treatment on microstructure and mechanical properties of inconel 625 alloy fabricated by pulsed plasma arc deposition. Phys Procedia 50:48–54

    Article  CAS  Google Scholar 

  13. Sundararaman M, Mukhopadhyay P, Banerjee S (1988) Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metall Trans A 19(3):453–465

    Article  Google Scholar 

  14. Sundararaman M, Mukhopadhyay P (1985) Heterogeneous precipitation of the γ″ phase in Inconel 625. Mater Sci Forum 3:273–280

    Article  CAS  Google Scholar 

  15. Evans ND, Maziasz PJ, Shingledecker JP, Yamamoto Y (2008) Microstructure evolution of alloy 625 foil and sheet during creep at 750°C. Mater Sci Eng, A 498(1):412–420

    Article  Google Scholar 

  16. Sundararaman M, Kumar L, Eswara Prasad G, Mukhopadhyay P, Banerjee S (1999) Precipitation of an intermetallic phase with Pt2Mo-type structure in alloy 625. Metall Mater Trans A: Phys Metall Mater Sci 30(1):41–52

    Article  Google Scholar 

  17. Silva CC, Miranda HCD, Motta MF, Farias JP, Afonso CRM, Ramirez AJ (2013) New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol 2(3):228–237

    Article  CAS  Google Scholar 

  18. Tian Y, Gontcharov A, Gauvin R, Lowden P, Brochu M (2017) Effect of heat treatment on microstructure evolution and mechanical properties of Inconel 625 with 0.4wt% boron modification fabricated by gas tungsten arc deposition. Mater Sci Eng: A 684:275–283

    Article  CAS  Google Scholar 

  19. Edvallees YD, Bouzidi F, Beaude N (1994) Superalloys 718, 706 and various derivatives, TMS 281–291

  20. Cieslak MJ, Headley TJ, Romig AD, Kollie T (1988) A melting and solidification study of alloy 625. Metall Trans A 19(9):2319–2331

    Article  Google Scholar 

  21. Liu D, Zhang X, Qin X, Ding Y (2017) High-temperature mechanical properties of Inconel-625: role of carbides and delta phase. Mater Sci Technol (UK) 33(14):1610–1617

    Article  CAS  Google Scholar 

  22. Joonoh M, Changhee L, Sangho U, Jongbong L (2006) Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: considering critical particle size. Acta Mater 54:1053–1061

    Article  Google Scholar 

  23. Jin HH, Shim JH, Cho YW, Lee HC (2015) Formation of intragranular acicular ferrite grains in a Ti-containing low carbon steel. High Temp Mater Process 34:1111–1113

    Google Scholar 

  24. Shi XW, Yu K, Jiang L, Li CW, Li ZJ, Zhou XT (2018) Microstructural characterization of Ni-201 weld cladding onto 304 stainless steel. Surf Coat Technol 334:19–28

    Article  CAS  Google Scholar 

  25. Mu Y, Wang C, Zhou W, Zhou L (2018) Effect of Nb on δ Phase Precipitation and the Tensile Properties in Cast Alloy IN625. Metals 8:86

    Article  Google Scholar 

  26. Kusabiraki K, Araie S-I, Hayakawa I, Ooka T (1992) Precipitation and growth of δ phase in Ni-l5Cr-8Fe-6Nb alloy. Tetsu-to-Hagane 78:1745–1752

    Article  CAS  Google Scholar 

  27. Dai T, Wheeling RA, Hartman-Vaeth K, Lippold JC (2019) Precipitation behavior and hardness response of Alloy 625 weld overlay under different aging conditions. Welding World 63(4):1087–1100

    Article  CAS  Google Scholar 

  28. Silva CC, de Albuquerque VHC, Miná EM, Moura EP, Tavares JMRS (2018) Mechanical properties and microstructural characterization of aged nickel-based alloy 625 weld metal. Metall Mater Trans A 49(5):1653–1673

    Article  CAS  Google Scholar 

  29. Kelly A, Nicholson RB (1963) Precipitation hardening. Prog Mater Sci 10:151–391

    Article  Google Scholar 

  30. Bertorello HR, Hertzberg RW, Mills W, Kraft RW, Notis M (1976) Solubility limits and precipitation phenomena in Ni-Ni3Nb aligned eutectic. Acta Metall 24(3):271–276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from National Key Research and Development Program of China (No. 2016YFB0700404), Natural Science Foundation of Shanghai (No. 20ZR1468600 and 19ZR1468200), National Natural Science Foundation of China (No. U2032205), Shanghai Industrial Transformation and Upgrading Development Special Project (No. GYQJ-2018-2-03), and Shanghai Excellent Academic and Technical Leader Program (No. 21XD1404300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzheng Xu or Zhijun Li.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Tang, X., Jiang, L. et al. Microstructure and hardness evolution of ERNiCrMo-3 deposited metal during aging at 750 °C. J Mater Sci 57, 9415–9426 (2022). https://doi.org/10.1007/s10853-021-06769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06769-2

Navigation