Skip to main content

Advertisement

Log in

Fabrication of uniform MnO2 layer-modified activated carbon cloth for high-performance flexible quasi-solid-state asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aqueous supercapacitors (SCs) attracted widespread attention owing to the advantages of high power density, low-cost, safety and environmental friendliness. However, the improvement of energy density is restricted by low cell voltage. Herein, a uniform MnO2 layer-modified activated carbon cloth (ACC-MnO2) is constructed by controlling the deposited time of MnO2 via a self-limiting electroless deposition process. The targeted flexible electrode exhibits optimal areal capacitance of 423.7 mF/cm2 at 0.5 mA/cm2 and also shows excellent cycle stability ~ 81% of its original value after 10 000 cycles scanned at 100 mV/s. Moreover, the flexible quasi-solid-state asymmetric SCs (FQSASCs) are assembled based on ACC-MnO2 as a flexible positive electrode, ACC as a flexible negative electrode, and PVA-LiCl as a gel electrolyte. The FQSASCs possess an extended voltage up to 2.0 V, show extremely excellent cycle stability (maintaining over 100% capacitance retention value after 5000 cycles at 10 mA/cm2), deliver excellent energy density (0.78 mWh/cm3) and power density (71.86 mW/cm3), and also exhibit superior mechanical properties (keeping over 100% of its initial capacitance after bending at 180° for 500 cycles). FQSASCs reveal potential applications as a candidate in flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790. https://doi.org/10.1039/C4CS00266K

    Article  CAS  Google Scholar 

  2. Raza W, Ali F, Raza N et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  3. Zhang L, Hu X, Wang Z, Sun F, Dorrell DG (2018) A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew Sustain Energy Rev 81:1868–1878. https://doi.org/10.1016/j.rser.2017.05.283

    Article  Google Scholar 

  4. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796–2806. https://doi.org/10.1021/acs.accounts.6b00460

    Article  CAS  Google Scholar 

  5. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480. https://doi.org/10.1016/j.carbon.2018.10.010

    Article  CAS  Google Scholar 

  6. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1:2817–2827. https://doi.org/10.1039/C9NA00345B

    Article  Google Scholar 

  7. Liu W, Song MS, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv mater. https://doi.org/10.1002/adma.201603436

    Article  Google Scholar 

  8. Tao X (2019) Study of fiber-based wearable energy systems. Acc Chem Res 52:307–315. https://doi.org/10.1021/acs.accounts.8b00502

    Article  CAS  Google Scholar 

  9. Guo X, Zheng S, Zhang G et al (2017) Nanostructured graphene-based materials for flexible energy storage. Energy Storage Mater 9:150. https://doi.org/10.1016/j.ensm.2017.07.006

    Article  Google Scholar 

  10. Huang L, Lin S, Xu Z et al (2020) Fiber-based energy conversion devices for human-body energy harvesting. Adv mater 32:e1902034. https://doi.org/10.1002/adma.201902034

    Article  CAS  Google Scholar 

  11. Lv T, Liu M, Zhu D, Gan L, Chen T (2018) Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv mater 30:1705489. https://doi.org/10.1002/adma.201705489

    Article  CAS  Google Scholar 

  12. Wang L, Feng X, Ren L et al (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613

    Article  CAS  Google Scholar 

  13. Dong L, Xu C, Li Y et al (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685. https://doi.org/10.1039/C5TA10582J

    Article  CAS  Google Scholar 

  14. Li J, Qiao J, Lian K (2020) Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review. Energy Storage Mater 24:6. https://doi.org/10.1016/j.ensm.2019.08.012

    Article  Google Scholar 

  15. Pedico A, Lamberti A, Gigot A et al (2018) High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Appl Energy Mater 1:4440–4447. https://doi.org/10.1021/acsaem.8b00904

    Article  CAS  Google Scholar 

  16. Shin D, Shin J, Yeo T, Hwang H, Park S, Choi W (2018) Scalable synthesis of triple-core–shell nanostructures of TiO2@MnO2@C for high performance supercapacitors using structure-guided combustion waves. Small 14:1703755. https://doi.org/10.1002/smll.201703755

    Article  CAS  Google Scholar 

  17. Tiwari SK, Thakur AK, Adhikari A, Zhu Y, Wang N (2020) Current research of graphene-based nanocomposites and their application for supercapacitors. Nanomaterials 10:2046. https://doi.org/10.3390/nano10102046

    Article  CAS  Google Scholar 

  18. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352. https://doi.org/10.1016/j.cej.2020.126352

    Article  CAS  Google Scholar 

  19. Zhao Y, Liu J, Horn M, Motta N, Hu M, Li Y (2018) Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater 61:159–184. https://doi.org/10.1007/s40843-017-9153-x

    Article  CAS  Google Scholar 

  20. Du P, Dong Y, Kang H et al (2018) Graphene-wrapped polyaniline nanowire array modified functionalized of carbon cloth for high-performance flexible solid-state supercapacitor. ACS Sustain Chem Eng 6:14723–14733. https://doi.org/10.1021/acssuschemeng.8b03278

    Article  CAS  Google Scholar 

  21. Du P, Dong Y, Liu C, Wei W, Liu D, Liu P (2018) Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J Colloid Interface Sci 518:57–68. https://doi.org/10.1016/j.jcis.2018.02.010

    Article  CAS  Google Scholar 

  22. Du W, Wang X, Zhan J et al (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915. https://doi.org/10.1016/j.electacta.2018.11.074

    Article  CAS  Google Scholar 

  23. Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z (2018) Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor. Nanotechnology 29:195405. https://doi.org/10.1088/1361-6528/aab124

    Article  CAS  Google Scholar 

  24. Ye Z, Li T, Ma G, Peng X, Zhao J (2017) Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J Power Sources 351:51–57. https://doi.org/10.1016/j.jpowsour.2017.03.104

    Article  CAS  Google Scholar 

  25. Jeon H, Jeong JM, Hong SB et al (2018) Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors. Electrochim Acta 280:9–16. https://doi.org/10.1016/j.electacta.2018.05.108

    Article  CAS  Google Scholar 

  26. Zhao P, Wang N, Yao M, Ren H, Hu W (2020) Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem Eng J 380:122488. https://doi.org/10.1016/j.cej.2019.122488

    Article  CAS  Google Scholar 

  27. Yuan L, Lu X-H, Xiao X et al (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661. https://doi.org/10.1021/nn2041279

    Article  CAS  Google Scholar 

  28. Pujari RB, Patil SJ, Park J, Shanmugasundaram A, Lee D-W (2019) Vertically aligned nanostructured FeOOH@MnO2 core shell electrode with better areal capacitance. J Power Sour 436:226826. https://doi.org/10.1016/j.jpowsour.2019.226826

    Article  CAS  Google Scholar 

  29. Song Z, Duan H, Li L et al (2019) High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem Eng J 372:1216–1225. https://doi.org/10.1016/j.cej.2019.05.019

    Article  CAS  Google Scholar 

  30. Liu Y, Guo L, Teng X et al (2019) High-performance 2.5 V flexible aqueous asymmetric supercapacitors based on K+/Na+-inserted MnO2 nanosheets. Electrochim Acta 300:9–17. https://doi.org/10.1016/j.electacta.2019.01.087

    Article  CAS  Google Scholar 

  31. Lu X, Yu M, Wang G et al (2013) H-TiO2@MnO2//H-TiO2@C Core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv mater 25:267–272. https://doi.org/10.1002/adma.201203410

    Article  CAS  Google Scholar 

  32. Yang P, Ding Y, Lin Z et al (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731. https://doi.org/10.1021/nl404008e

    Article  CAS  Google Scholar 

  33. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078. https://doi.org/10.1021/nl400378j

    Article  CAS  Google Scholar 

  34. Wang G, Wang H, Lu X et al (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv mater 26:2676. https://doi.org/10.1002/adma.201304756

    Article  CAS  Google Scholar 

  35. Jiang S, Shi T, Zhan X et al (2014) High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J Power Sources 272:16. https://doi.org/10.1016/j.jpowsour.2014.08.049

    Article  CAS  Google Scholar 

  36. Hou C, Yang W, Xie X et al (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407. https://doi.org/10.1016/j.jcis.2021.03.149

    Article  CAS  Google Scholar 

  37. Wang J, Tian L, Xie W et al (2020) A hierarchical interconnected nanosheet structure of porous δ-MnO2 on graphite paper as cathode with a broad potential window for NaNO3 aqueous electrolyte supercapacitors. ACS Appl Energy Mater 3:2614–2622. https://doi.org/10.1021/acsaem.9b02304

    Article  CAS  Google Scholar 

  38. Wu C, Zhu Y, Ding M, Jia C, Zhang K (2018) Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochim Acta 291:249–255. https://doi.org/10.1016/j.electacta.2018.08.126

    Article  CAS  Google Scholar 

  39. Du P, Dong Y, Kang H, Li J, Niu J, Liu P (2020) Superior cycle stability carbon layer encapsulated polyaniline nanowire core-shell nanoarray free-standing electrode for high performance flexible solid-state supercapacitors. J Power Sour 449:227477. https://doi.org/10.1016/j.jpowsour.2019.227477

    Article  CAS  Google Scholar 

  40. Du W, Wang X, Sun X, Zhan J, Zhang H, Zhao X (2018) Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. J Electroanal Chem 827:213–220. https://doi.org/10.1016/j.jelechem.2018.09.031

    Article  CAS  Google Scholar 

  41. Wu D, Yu H, Hou C et al (2020) NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor. J Mater Sci 55:14431–14446. https://doi.org/10.1007/s10853-020-05022-6

    Article  CAS  Google Scholar 

  42. Zilong W, Zhu Z, Qiu J, Yang S (2014) High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide. J Mater Chem C 2:1331–1336. https://doi.org/10.1039/C3TC31476F

    Article  Google Scholar 

  43. Zheng H, Zhai T, Yu M et al (2013) TiO2@C core-shell nanowires for high-performance and flexible solid-state supercapacitors. J Mater Chem C 1:225–229. https://doi.org/10.1039/C2TC00047D

    Article  CAS  Google Scholar 

  44. Gao L, Song J, Surjadi JU et al (2018) Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl Mater Interfaces 10:28597–28607. https://doi.org/10.1021/acsami.8b08680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (grant no. 22005127) and Natural Science Foundation of Gansu Province (Grant nos. 20JR10RA609, 21JR7RA465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Du.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8635 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Dong, Y., Dong, Y. et al. Fabrication of uniform MnO2 layer-modified activated carbon cloth for high-performance flexible quasi-solid-state asymmetric supercapacitor. J Mater Sci 57, 3497–3512 (2022). https://doi.org/10.1007/s10853-021-06728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06728-x

Navigation