Skip to main content
Log in

Red-emitting BaAl2O4:Eu3+ synthesized via Pechini and sol–gel routes: a comparison of luminescence and structure

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

UV-to-red downshifting phosphors such as BaAl2O4:Eu3+ find broad range of application in sensors, displays, and in solid-state lighting, yet new synthetic routes to improve their luminescence are envisaged. In this regard, herein, it is introduced two new methods to synthesize this environmentally friendly BaAl2O4:Eu3+, by an adapted sol–gel route and a modified Pechini synthesis. Additionally, a systematic study was carried out about the Eu3+ doping concentration and charge compensation effects on the structural, morphological and spectroscopic features. Both routes enabled high-crystalline and nanostructured phosphors displaying optic bandgap near to 4.4 eV, although the sol–gel route also led to low amounts of BaCO3 spurious phase. Upon UV (250 nm) excitation, all Eu3+-doped samples emit red light displaying high emission color purity, characteristic of the 5D0 → 7F0-4 electronic transitions of Eu3+. The Pechini method led to the highest intrinsic emission quantum yield (85% for the 3%-doped sample). Eu3+ replaces Ba2+ within the BaAl2O4 lattice, but in the sol–gel-derived samples, the dopant may also replace Ba2+ into the BaCO3 spurious phase, confirming that the Pechini route is the best one to optimize the luminescence and structure of the phosphor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Moscardini SB, Sverzut L, Massarotto WL, Nassar EJ, Rocha LA (2020) Multi-color emission from lanthanide ions doped into niobium oxide. J Mater Sci Mater Electron 31:5241–5252. https://doi.org/10.1007/s10854-020-03084-5

    Article  CAS  Google Scholar 

  2. Kim CH, Kwon IE, Park CH, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY (2000) Phosphors for plasma display panels. J Alloys Compd 311:33–39. https://doi.org/10.1016/S0925-8388(00)00856-2

    Article  CAS  Google Scholar 

  3. Edgar A (2004–2021) Luminescent Materials. In: Kasap S, Capper P (eds) Springer Handbook of Electronic and Photonic Materials. Springer, Cham., pp. 1–1.

  4. Bispo-Jr AG, Lima SAM, Pires AM (2018) Energy transfer between terbium and europium ions in barium orthosilicate phosphors obtained from sol-gel route. J Lumin 199:372–378. https://doi.org/10.1016/j.jlumin.2018.03.057

    Article  CAS  Google Scholar 

  5. Wang L, Xie RJ, Suehiro T, Takeda T, Hirosaki N (2018) Down-Conversion nitride materials for solid state lighting: recent advances and perspectives. Chem Rev 118:1951–2009. https://doi.org/10.1021/acs.chemrev.7b00284

    Article  CAS  Google Scholar 

  6. Bispo-Jr AG, Lima SAM, Carlos LD, Ferreira RAS, Pires AM (2020) Red-emitting coatings for multifunctional UV/Red emitting LEDs applied in plant circadian rhythm control. ECS J Solid State Sci Technol 9:016008. https://doi.org/10.1149/2.0122001JSS

    Article  Google Scholar 

  7. Bispo-Jr AG, Saraiva LF, Lima SAM, Pires AM, Davolos MR (2021) Recent prospects on phosphor-converted LEDs for lighting, displays, phototherapy, and indoor farming. J Lumin 237:118167. https://doi.org/10.1016/j.jlumin.2021.118167

    Article  CAS  Google Scholar 

  8. Carlos LD, Ferreira RAS, Bermudez VZ, Julian-Lopez B, Escribano P (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–549. https://doi.org/10.1039/c0cs00069h

    Article  CAS  Google Scholar 

  9. Kaur J, Jaykumar B, Dubey V, Shrivastava R, Suryanarayana NS (2015) Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review. Res Chem Intermed 41:2317–2343. https://doi.org/10.1007/s11164-013-1349-z

    Article  CAS  Google Scholar 

  10. Shimokawa Y, Sakaida S, Iwata S, Inoue K, Honda S, Iwamoto Y (2015) Synthesis and characterization of Eu3+ doped CaZrO3-based perovskite type phosphors part II: PL properties related to the two different dominant Eu3+ substitution sites. J Lumin 157:113–118. https://doi.org/10.1016/j.jlumin.2014.08.042

    Article  CAS  Google Scholar 

  11. Wiglusz RJ, Grzyb T (2013) Sol–gel synthesis of micro and nanocrystalline BaAl2O4:Eu3+ powders and their luminescence properties. Opt Mater 36:539–545. https://doi.org/10.1016/j.optmat.2013.10.029

    Article  CAS  Google Scholar 

  12. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  13. Nakauchi D, Okada G, Kato T, Kawaguchi N, Yanagida T (2020) Crystal growth and scintillation properties of Eu:BaAl2O4 crystals. Radiat Meas 135:106365. https://doi.org/10.1016/j.radmeas.2020.106365

    Article  CAS  Google Scholar 

  14. Raia RK, Upadhyay AK, Kher RS, Dhoble SJ, Mehta M (2011) BaAl2O4: Eu - Phosphor for mechanoluminescence dosimetry. Radiat Meas 46:1393–1396. https://doi.org/10.1016/j.radmeas.2011.08.016

    Article  CAS  Google Scholar 

  15. Chatterjee R, Saha S, Sen D, Panigrahi K, Ghorai UK, Das GC, Chattopadhyay KK (2018) Neutralizing the Charge Imbalance Problem in Eu3+-Activated BaAl2O4 Nanophosphors: Theoretical Insights and Experimental Validation Considering K+ Codoping. ACS Omega 3:788–800. https://doi.org/10.1021/acsomega.7b01525

    Article  CAS  Google Scholar 

  16. Marí B, Singh KC, Verma N, Mollar M, Jindal J (2015) Luminescence Properties of the Eu2+/Eu3+ activated barium aluminate phosphors with Gd3+ concentration variation. Trans Ind Ceram Soc 74:1–5. https://doi.org/10.1080/0371750X.2015.1082932

    Article  CAS  Google Scholar 

  17. Grzeta B, Lutzenkirchen-Hecht D, Vrankic M, Bosnar S, Saric A, Takahashi M, Petrov D, Biscan M (2018) Environment of the Eu3+ ion within nanocrystalline Eu-Doped BaAl2O4: correlation of X-ray diffraction, mossbauer spectroscopy, X-ray absorption spectroscopy, and photoluminescence investigations. Inorg Chem 57:1744–1756. https://doi.org/10.1021/acs.inorgchem.7b02322

    Article  CAS  Google Scholar 

  18. Rezende MVS, Montes PJR, Andrade AB, Macedo ZS, Valerio MEG (2016) Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor. Phys Chem Chem Phys 18:17646. https://doi.org/10.1039/C6CP01183G

    Article  CAS  Google Scholar 

  19. Rezende MVS, Montes PJ, Valerio MEG, Jackson RA (2012) The optical properties of Eu3+ doped BaAl2O4: a computational and spectroscopic study. Opt Mater 34:1434–1439. https://doi.org/10.1016/j.optmat.2012.02.050

    Article  CAS  Google Scholar 

  20. Rezende MVS, Andrade AB, William C, Paschoal A (2018) Co-doping effect of Ca2+ on luminescent properties of BaAl2O4:Eu3+ phosphors. J Electron Spectros Relat Phenomena 225:62–65. https://doi.org/10.1016/j.elspec.2018.04.002

    Article  CAS  Google Scholar 

  21. Araujo RM, Mattos EFS, Júnior BFS, Rezende MVS, Valerio MEG, Jackson RA (2021) Optical spectroscopy study of Eu-doped ions in BaAl2O4 phosphors. J Lumin 236:118011. https://doi.org/10.1016/j.jlumin.2021.118011

    Article  CAS  Google Scholar 

  22. Gomes MA, Andrade AB, Rezende MVS, Valerio MEG (2017) Production of Eu-doped BaAl2O4 at low temperature via an alternative solgel method using PVA as complexing agent. J Phys Chem Solids 102:74–78. https://doi.org/10.1016/j.jpcs.2016.11.010

    Article  CAS  Google Scholar 

  23. Verma N, Marí B, Singh KC, Jindal J, Yadav S, Mittal A (2019) Enhanced luminescence by tunable coupling of Eu3+ and Tb3+ in ZnAl2O4:Eu3+:Tb3+ phosphor synthesized by solution combustion method. J Aust Ceram Soc 55:179–185. https://doi.org/10.1007/s41779-018-0223-2

    Article  CAS  Google Scholar 

  24. Kumar N, Marí B, Jindal J, Mittal KK, Maken S (2019) Near ultraviolet excited down conversion Eu and Er co-doped CaAl2O4 color tunable nano-phosphors: Structural, morphological and photolumniscent characteristics. Mater Today Proc 19:646–649. https://doi.org/10.1016/j.matpr.2019.07.747

    Article  CAS  Google Scholar 

  25. Bispo-Jr AG, Ceccato DA, Lima SAM, Pires AM (2017) Red phosphor based on Eu3+-isoelectronically doped Ba2SiO4 obtained via sol–gel route for solid state lightning. RSC Adv 7:53752. https://doi.org/10.1039/C7RA10494D

    Article  Google Scholar 

  26. Oliveira NA, Bispo-Jr AG, Shinohara GMM, Lima SAM, Pires AM (2021) The influence of the complexing agent on the luminescence of multicolor-emitting Y2O3:Eu3+, Er3+, Yb3+ phosphors obtained by the Pechini’s method. Mater Chem Phys 257:123840. https://doi.org/10.1016/j.matchemphys.2020.123840

    Article  CAS  Google Scholar 

  27. Aflaki M, Davar F (2016) Synthesis, luminescence and photocatalyst properties of zirconita nanosheets by modified Pechini method. J Mol Liq 221:1071–1079. https://doi.org/10.1016/j.molliq.2016.06.067

    Article  CAS  Google Scholar 

  28. Loghman-Estarki MR, Razavi RS, Edris H, Pourbafrany M, Jamali H, Ghasemi R, Lifetime of new SYSZ thermal barrier coatings produced by plasma spraying method under thermal shock test and high temperature treatment. Ceram Int 40:1405–1414. https://doi.org/10.1016/j.ceramint.2013.07.023

  29. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  30. Murphy AB (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemicalwater-splitting. Sol Energy Mater Sol Cells 91:1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005

    Article  CAS  Google Scholar 

  31. Kubelka P, Munk F (1931) EinBeitragzurOptik der Farbanstriche. Z Tech Phys 15:593–601

    Google Scholar 

  32. Duarte AP, Gressier M, Menu M, Dexpert-Ghys J, Caiut JMA, Ribeiro SJL (2012) Structural and luminescence properties of silica-based hybrids containing new Silylated-Diketonato Europium(III) Complex. J Phys Chem C 116:505–515. https://doi.org/10.1021/jp210338t

    Article  CAS  Google Scholar 

  33. Weber MJ, (2002) Handbook of Optical Materials, first ed., CRC Press.

  34. Kodaira C, Brito HF, Malta OL, Serra OA (2003) Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. J Lumin 101:11–21. https://doi.org/10.1016/S0022-2313(02)00384-8

    Article  CAS  Google Scholar 

  35. Bispo-Jr AG, Lima SAM, Lanfredi S, Praxedes FR, Pires AM (2019) Tunable blue-green emission and energy transfer properties in Ba2SiO4:Tb3+ obtained from sol-gel method. J Lumin 214:116604. https://doi.org/10.1016/j.jlumin.2019.116604

    Article  CAS  Google Scholar 

  36. Phule PP, Risbud SH (1980) Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system. J Mater Sci 25:1169–2118. https://doi.org/10.1007/BF00585422

    Article  Google Scholar 

  37. López MDCB, Fourlaris G, Rand B, Riley FL (1999) Characterization of barium titanate powders: Barium carbonate identification. J Am Ceram Soc 82:1777–1786. https://doi.org/10.1111/j.1151-2916.1999.tb01999.x

    Article  Google Scholar 

  38. Andrade-Espinosa G, Escobar-Barrios V, Rangel-Mendez R (2010) Synthesis and characterization of silica xerogels obtained via fast sol–gel process. Colloid Polym Sci 288:1697–1704. https://doi.org/10.1007/s00396-010-2311-x

    Article  CAS  Google Scholar 

  39. Brinker CJ, Scherrer GW (1990) Sol-gel science, the physics and chemistry of sol-gel processing. Academic, San Diego

    Google Scholar 

  40. Perullini M, Jobbagy M, Bilmes SA, Torriani IL, Candal R (2011) Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol–gel route. J Sol-Gel Sci Technol 59:174–180. https://doi.org/10.1007/s10971-011-2478-8

    Article  CAS  Google Scholar 

  41. Amaral FA, Santana LK, Campos IO, Fagundes WS, Xavier FFS, Canobre SC, Pechini Synthesis of Nanostructured Li1.05M0.02Mn1.98O4 (M = Al3+ or Ga3+). Mater Res 18:250–259. doi: https://doi.org/10.1590/1516-1439.361514

  42. Loghman-Estarki MR, Hajizadeh-Oghaz M, Edris H, RS, (2013) Comparative studies on synthesis of nanocrystalline Sc2O3–Y2O3 doped zirconia (SYDZ) and YSZ solid solution via modified and classic Pechini method. Cryst Eng Comm 15:5898–5909. https://doi.org/10.1039/C3CE40288F

    Article  CAS  Google Scholar 

  43. Macedo WC, Bispo-Jr AG, Rocha KO, Albas AES, Pires AM, Teixeira SR, Longo E (2020) Photoluminescence of Eu3+-doped CaZrO3 red-emitting phosphors synthesized via microwave-assisted hydrothermal method. Mater Today Commun 24:100966. https://doi.org/10.1016/j.mtcomm.2020.100966

    Article  CAS  Google Scholar 

  44. Hiratsuka RS, Santili CV, Pulcinelli SH, (1995) O processo sol-gel:uma visão físico-química. Quim. Nova 18:171–180. https://doi.org/10.21577/0100-4042.20170623

  45. Oliveira HFN, Trinca RB, Gushikem Y (2009) Síntese e estudo de ortossilicatos de zinco luminescentes com aplicação da técnica sol-gel. Quim Nova 32:1346. https://doi.org/10.1590/S0100-40422009000500045

    Article  Google Scholar 

  46. Zhang LW, Wang L, Zhu YF, Synthesis and performance of BaAl2O4 with a wide spectral range of optical absorption. Adv Funct Mater 17:3781–3790. doi: https://doi.org/10.1002/adfm.200700506

  47. Carnall, WT, Crosswhite, H, Crosswhite, HM (1978) Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF2. USDOE Office of Science, United States.

  48. Tanner PA (2013) Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem Soc Rev 42:5090–5101. https://doi.org/10.1039/C3CS60033E

    Article  CAS  Google Scholar 

  49. Tanner PA, Yeung YY, Ning L (2013) What Factors Affect the 5D0 Energy of Eu3+? An investigation of nephelauxetic effects. J Phys Chem A 117:2771–2781. https://doi.org/10.1021/jp400247r

    Article  CAS  Google Scholar 

  50. Moura RT, Neto ANC, Longo RL, Malta OL (2016) On the calculation and interpretation of covalency in the intensity parameters of 4f–4f transitions in Eu3+ complexes based on the chemical bond overlap polarizability. J Lumin 170:420. https://doi.org/10.1016/j.jlumin.2015.08.016

    Article  CAS  Google Scholar 

  51. Uitert LG (1967) Characterization of energy transfer interactions between rare earth ions. J Electrochem Soc 14:1048–1053. https://doi.org/10.1149/1.2424184

    Article  Google Scholar 

  52. Ting L, Qingyu M, Wenjun S (2015) Luminescent properties of Eu3+ doped NaY(WO4)2 nanophosphors prepared by molten salt method. J Rare Earths 33:915–921. https://doi.org/10.1016/S1002-0721(14)60505-6

    Article  CAS  Google Scholar 

  53. Grzyb T, Wecławiak M, Rozowska J, Lis S (2013) Structural and spectroscopic properties of YOF:Eu3+ nanocrystals. J Alloy Compd 576:345–349. https://doi.org/10.1016/j.jallcom.2013.05.207

    Article  CAS  Google Scholar 

  54. Som S, Das S, Dutta S, Visser HG, Pandey MK, Kumar P, Dubey RK, Sharma SK (2015) Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis. RSC Adv 5:70887–70898. https://doi.org/10.1039/C5RA13247A

    Article  CAS  Google Scholar 

  55. Bispo-Jr AG, Shinohara GMM, Pires AM, Cardoso CX (2018) Red phosphor based on Eu3+-doped Y2(MoO4)3 incorporated with Au NPs synthesized via Pechini’s method. Opt Mater 84:137–145. https://doi.org/10.1016/j.optmat.2018.06.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Brazilian agencies CNPq (Grant No. 304003/2018-2) and FAPESP for the financial research support. Laboratório de Microscopia Eletrônica de Varredura (FCT-UNESP, Prof. Dr. N. Alves), Laboratório de Materiais Cerâmicos (LaMaC, FCT-UNESP), and Laboratório Multiusuário de Análises Químicas (IQ/UNESP – Araraquara).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergio A. Marques Lima or Ana M. Pires.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 921 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, N.A., Bispo-Jr, A.G., Lima, S.A.M. et al. Red-emitting BaAl2O4:Eu3+ synthesized via Pechini and sol–gel routes: a comparison of luminescence and structure. J Mater Sci 57, 170–184 (2022). https://doi.org/10.1007/s10853-021-06633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06633-3

Navigation