Skip to main content

Advertisement

Log in

Two-dimensional metallic BP as anode material for lithium-ion and sodium-ion batteries with unprecedented performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Improving the storage capacities of electrode materials is one of the most critical points for ion batteries. Two-dimensional (2D) topological semimetals with high carrier mobility are naturally suitable as electrode materials. Herein, using the first-principle calculations, 2D BP monolayer with Dirac-type band structure is predicted to be a superior anode material with ultrahigh capacity for both Li/Na-ion batteries. The BP monolayer remains metallic after the adsorption of Li/Na ions, ensuring a good conductivity. Furthermore, BP owns low diffusion barriers (0.35 eV for Li ions and 0.16 eV for Na ions) and a moderate lattice change (3%) during the process of charging and discharging. Remarkably, the storage capacity of monolayer BP is enhanced to 1924 mAh/g by multilayer adsorption of both Li/Na ions, much higher than those of most previous 2D anode materials. All these characteristics strongly suggest that BP has great potential as a superior anode material in Li/Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Xu J, Dou Y, Wei Z, Ma J, Deng Y, Li Y, Liu H, Dou S (2017) Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv Sci 4:1700146

    Article  Google Scholar 

  2. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  3. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  4. Delmas C (2018) Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 8:1703137

    Article  Google Scholar 

  5. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  6. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  7. Li W, Yang Y, Zhang G, Zhang Y-W (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15:1691–1697

    Article  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  9. Lv X, Wei W, Huang B, Dai Y (2019) Achieving high energy density for lithium-ion battery anodes by Si/C nanostructure design. J Mater Chem A 7:2165–2171

    Article  CAS  Google Scholar 

  10. Cai G, Tu J, Zhang J, Mai Y, Lu Y, Gu C, Wang X (2012) An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4:5724–5730

    Article  CAS  Google Scholar 

  11. Fu C, Zhao G, Zhang H, Li S (2013) Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for Lithium-ion batteries. Int J Electrochem Sci 8:6269–6280

    CAS  Google Scholar 

  12. Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6:7867–7878

    Article  CAS  Google Scholar 

  13. Pollak E, Geng B, Jeon KJ, Lucas IT, Richardson TJ, Wang F, Kostecki R (2010) The interaction of Li+ with single-layer and few-layer graphene. Nano Lett 10:3386–3388

    Article  CAS  Google Scholar 

  14. Tang Q, Zhou Z, Chen Z (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5:4541–4583

    Article  CAS  Google Scholar 

  15. Wang D, Liu L-M, Zhao S-J, Hu Z-Y, Liu H (2016) potential application of metal dichalcogenides double-layered heterostructures as anode materials for Li-ion batteries. J Phys Chem C 120:4779–4788

    Article  CAS  Google Scholar 

  16. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    Article  CAS  Google Scholar 

  17. Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286

    Article  CAS  Google Scholar 

  18. Hu J, Xu B, Ouyang C, Zhang Y, Yang SA (2016) Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Adv 6:27467–27474

    Article  CAS  Google Scholar 

  19. Bo T, Liu P-F, Zhang J, Wang F, Wang B-T (2019) Tetragonal and trigonal Mo2B2 monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Phys Chem Chem Phys 21:5178–5188

    Article  CAS  Google Scholar 

  20. Hu J, Xu B, Yang SA, Guan S, Ouyang C, Yao Y (2015) 2D electrides as promising anode materials for Na-ion batteries from first-principles study. ACS Appl Mater Interfaces 7:24016–24022

    Article  CAS  Google Scholar 

  21. Zhang X, Yu Z, Wang S-S, Guan S, Yang HY, Yao Y, Yang SA (2016) Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries. J Mater Chem A 4:15224–15231

    Article  CAS  Google Scholar 

  22. Deng S, Wang L, Hou T, Li Y (2015) Two-dimensional MnO2 as a better cathode material for lithium ion batteries. J Phys Chem C 119:28783–28788

    Article  CAS  Google Scholar 

  23. Hu J, Ouyang C, Yang SA, Yang HY (2019) Germagraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nanoscale Horiz 4:457–463

    Article  CAS  Google Scholar 

  24. Zhang X, Hu J, Cheng Y, Yang HY, Yao Y, Yang SA (2016) Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8:15340–15347

    Article  CAS  Google Scholar 

  25. Hu JP, Zhong CY, Wu WK, Liu N, Liu Y, Yang SYA, Ouyang CY (2020) 2D honeycomb borophene oxide: a promising anode material offering super high capacity for Li/Na-ion batteries. J Phys Condens Matter 32:065001

    Article  CAS  Google Scholar 

  26. Jiang HR, Shyy W, Liu M, Wei L, Wu MC, Zhao TS (2017) Boron phosphide monolayer as a potential anode material for alkali metal-based batteries. J Mater Chem A 5:672–679

    Article  CAS  Google Scholar 

  27. Hu J, Xu B, Ouyang C, Yang SA, Yao Y (2014) Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for Li ion batteries from first-principles calculations. J Phys Chem C 118:24274–24281

    Article  CAS  Google Scholar 

  28. Zhang Y, Kang J, Zheng F, Gao P-F, Zhang S-L, Wang L-W (2019) Borophosphene: a new anisotropic Dirac cone monolayer with a high Fermi velocity and a unique self-doping feature. J Phys Chem Lett 10:6656–6663

    Article  CAS  Google Scholar 

  29. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  30. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  31. Parr RG, Fukui K, Pullman B (1980) Density functional theory of atoms and molecules. Springer, Netherlands, pp 5–15

    Google Scholar 

  32. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  34. Yang L-M, Bačić V, Popov IA, Boldyrev AI, Heine T, Frauenheim T, Ganz E (2015) Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J Am Chem Soc 137:2757–2762

    Article  CAS  Google Scholar 

  35. Meng L, Ni S, Zhou M, Zhang Y, Li Z, Wu W (2017) Metal–semiconductor transition of two-dimensional Mg2C monolayer induced by biaxial tensile strain. Phys Chem Chem Phys 19:32086–32090

    Article  CAS  Google Scholar 

  36. Hu L, Wu X, Yang J (2016) Mn2C monolayer: a 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling. Nanoscale 8:12939–12945

    Article  CAS  Google Scholar 

  37. Li Y, Liao Y, Chen Z (2014) Be2C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew Chem Int Ed 53:7248–7252

    Article  CAS  Google Scholar 

  38. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  39. Toyoura K, Koyama Y, Kuwabara A, Oba F, Tanaka I (2008) First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound. Phys Rev B 78:214303

    Article  Google Scholar 

  40. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916

    Article  CAS  Google Scholar 

  41. Zhang X, Jin L, Dai X, Chen G, Liu G (2018) Two-dimensional GaN: an excellent electrode material providing fast ion diffusion and high storage capacity for Li-ion and Na-ion batteries. ACS Appl Mater Interfaces 10:38978–38984

    Article  CAS  Google Scholar 

  42. Li F, Qu Y, Zhao M (2016) Germanium sulfide nanosheet: a universal anode material for alkali metal ion batteries. J Mater Chem A 4:8905–8912

    Article  CAS  Google Scholar 

  43. Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum MW, Zhuang HL, Kent PR (2014) Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano. 8:9606–9615

    Article  CAS  Google Scholar 

  44. Sun Q, Dai Y, Ma Y, Jing T, Wei W, Huang B (2016) Ab initio prediction and characterization of Mo2C monolayer as anodes for Lithium-ion and sodium-ion batteries. J Phys Chem Lett 7:937–943

    Article  CAS  Google Scholar 

  45. Yu S, Wang Z, Xiong L, Xiong W, Ouyang C (2019) Interpenetrating graphene network bct-C40: a promising anode material for Li ion batteries. Phys Chem Chem Phys 21:23485–23491

    Article  CAS  Google Scholar 

  46. Ullah S, Denis PA, Capaz RB, Sato F (2019) Theoretical characterization of hexagonal 2D Be3N2 monolayers. New J Chem 43:2933–2941

    Article  CAS  Google Scholar 

  47. Yang E, Ji H, Jung Y (2015) Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J Phys Chem C 119:26374–26380

    Article  CAS  Google Scholar 

  48. Kulish VV, Malyi OI, Persson C, Wu P (2015) Adsorption of metal adatoms on single-layer phosphorene. Phys Chem Chem Phys 17:992–1000

    Article  CAS  Google Scholar 

  49. Xiao Y, Ding Y, Cheng H, Lu Z (2019) The potential application of 2D Ti2CT2 (T = C, O and S) monolayer MXenes as anodes for Na-ion batteries: a theoretical study. Comput Mater Sci 163:267–277

    Article  CAS  Google Scholar 

  50. Wu J, Wang D, Liu H, Lau W-M, Liu L-M (2015) An ab initio study of TiS3: a promising electrode material for rechargeable Li and Na ion batteries. RSC Adv. 5:21455–21463

    Article  CAS  Google Scholar 

  51. Thomas S, Jung H, Kim S, Jun B, Lee CH, Lee SU (2019) Two-dimensional haeckelite h567: a promising high capacity and fast Li diffusion anode material for lithium-ion batteries. Carbon N. Y. 148:344–353

    Article  CAS  Google Scholar 

  52. Hu J, Wang Z, Zhang G, Liu Y, Liu N, Li W, Li J, Ouyang C, Yang SA (2021) Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries. Chin Phys B 30:46302

    Article  Google Scholar 

  53. Cheng Z, Zhang X, Zhang H, Gao J, Liu H, Yu X, Dai X, Liu G, Chen G (2021) A theoretical prediction of NP monolayer as a promising electrode material for Li-/Na-ion batteries. Appl. Surf. Sci. 547:149209

    Article  CAS  Google Scholar 

  54. Hu J, Liu Y, Liu N, Li J, Ouyang C (2020) Theoretical prediction of T-graphene as a promising alkali-ion battery anode offering ultrahigh capacity. Phys Chem Chem Phys 22:3281–3289

    Article  CAS  Google Scholar 

  55. Zhang J, Zhang Y-F, Li Y, Ren Y-R, Huang S, Lin W, Chen W-K (2021) Blue-AsP monolayer as a promising anode material for lithium- and sodium-ion batteries: a DFT study. Phys Chem Chem Phys 23:5143–5151

    Article  CAS  Google Scholar 

  56. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion Batteries. ACS Appl. Mater. Interfaces. 6:11173–11179

    Article  CAS  Google Scholar 

  57. Sun D, Hu Q, Chen J, Zhang X, Wang L, Wu Q, Zhou A (2016) Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: a first-principles investigation. ACS Appl Mater Interfaces 8:74–81

    Article  CAS  Google Scholar 

  58. Wang S, Zhang W, Lu C, Ding Y, Yin J, Zhang P, Jiang Y (2020) Enhanced ion diffusion induced by structural transition of Li-modified borophosphene. Phys Chem Chem Phys 22:21326–21333

    Article  CAS  Google Scholar 

  59. Zhang Y, Zhang E-H, Xia M-G, Zhang S-L (2020) Borophosphene as a promising Dirac anode with large capacity and high-rate capability for sodium-ion batteries. Phys Chem Chem Phys 22:20851–20857

    Article  CAS  Google Scholar 

  60. Zhang S-H, Liu B-G (2018) Superior ionic and electronic properties of ReN2 monolayers for Na-ion battery electrodes. Nanotechnology. 29:325401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11834002) and the Natural Science Foundation of Jiangsu Province (BK20200345). Computing resources used in this work were mainly provided by the Big Data Center of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Shan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 320 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WC., Wang, SS. & Dong, S. Two-dimensional metallic BP as anode material for lithium-ion and sodium-ion batteries with unprecedented performance. J Mater Sci 56, 13763–13771 (2021). https://doi.org/10.1007/s10853-021-06174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06174-9

Navigation