Skip to main content

Advertisement

Log in

Bioinspired thermal/light-tunable actuators based on predesigned tilted liquid crystal actuators

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Smart material-based actuators have attracted much interest because of their envisioned applications in the fields of soft robotics, sensors, and artificial muscles. In this study, we fabricated liquid crystal (LC) actuators via polydopamine (PDA) assistance based on controlling the order parameters. The irregular aggregation of PDA particles coated on the LC film surface was evaluated. To synthesize LC actuators, a predesigned glass sample cell filled with tilt-arranged LCs was fabricated. The LC mixtures were polymerized by 254 nm UV irradiation in glass sample cells. The polymerized LC films showed reversible bending and helical motions depending on predesigned molecular arrangement of the films. This phenomenon was attributed to the phase transition from monodomain to isotropic LC films triggered by temperature and near-infrared light exposure. Adding of chiral dopant shows much higher curling efficiency on thermal stimulation. A hand-shaped actuator with gripping ability was prepared from the synthesized LC networks. The near-infrared light sensitivity of the LC networks was further enhanced using PDA coated on the surface. The observed results suggested that the synthesized LC actuators effectively converted thermal energy and photo-energy to mechanical power. These predesigned LC actuators hold potential for applications as artificial muscles and in micro robotics.

Graphical abstract

A series of thermally tunable liquid crystal elastomeric films was synthesized. Reversible shape variation controlled by temperature or light was achieved based on the order parameter control via the assistance of polydopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Wang Z, He Q, Wang Y, Cai S (2019) Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter 15:2811–2816. https://doi.org/10.1039/C9SM00322C

    Article  CAS  Google Scholar 

  2. Dong Y, Wang J, Guo X et al (2019) Multi-stimuli-responsive programmable biomimetic actuator. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-12044-5

    Article  Google Scholar 

  3. Zhang L, Pan J, Liu Y, Xu Y, Zhang A (2020) NIR–UV responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices. ACS Appl Mater Interfaces 12:6727–6735. https://doi.org/10.1021/acsami.9b20672

    Article  CAS  Google Scholar 

  4. Yu L, Peng R, Rivers G, Zhang C, Si P, Zhao B (2020) Multifunctional liquid crystal polymer network soft actuators. J Mater Chem A 8:3390–3396. https://doi.org/10.1039/C9TA12139K

    Article  CAS  Google Scholar 

  5. Osaki M, Ito K, Ikemoto Y et al (2020) Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. Eur Polym J 134:109806. https://doi.org/10.1016/j.eurpolymj.2020.109806

    Article  CAS  Google Scholar 

  6. Zhang ZX, Qi XD, Li ST et al (2018) Water-actuated shape-memory and mechanicallyadaptive poly (ethylene vinyl acetate) achieved by adding hydrophilic poly (vinyl alcohol). Eur Polym J 98:237–245. https://doi.org/10.1016/j.eurpolymj.2017.11.031

    Article  Google Scholar 

  7. Wang Y, Niu W, Zhang S, Ju B (2020) Solvent responsive single-material inverse opal polymer actuator with structural color switching. J Mater Sci 55:817–827. https://doi.org/10.1007/s10853-019-04055-w

    Article  CAS  Google Scholar 

  8. Besse N, Rosset S, Zarate JJ, Shea H (2017) Flexible active skin: large reconfigurable arrays of individually addressed shape memory polymer actuators. Adv Mater Technol 2:1700102. https://doi.org/10.1002/admt.201700102

    Article  Google Scholar 

  9. Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X (2017) Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 8:1–12. https://doi.org/10.1038/ncomms14230

    Article  Google Scholar 

  10. Wei S, Lu W, Le X et al (2019) Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew Chem Int Ed 58:16243–16254. https://doi.org/10.1002/anie.201908437

    Article  CAS  Google Scholar 

  11. Wang HS, Cho J, Song DS, Jang JH, Jho JY, Park JH (2017) High-performance electroactive polymer actuators based on ultrathick ionic polymer–metal composites with nanodispersed metal electrodes. ACS Appl Mater Interfaces 9:21998–22022. https://doi.org/10.1021/acsami.7b04779

    Article  CAS  Google Scholar 

  12. Liu X, Kim SK, Wang X (2016) Thermomechanical liquid crystalline elastomer capillaries with biomimetic peristaltic crawling function. J Mater Chem B 4:7293–7302. https://doi.org/10.1039/C6TB02372J

    Article  CAS  Google Scholar 

  13. MO Saed, AH Torbati, DP Nair, CM Yakacki (2016) Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. J Vis Exp 107:e53546. https://doi.org/10.3791/53546

  14. Ware TH, Biggins JS, Shick AF, Warner M, White TJ (2016) Localized soft elasticity in liquid crystal elastomers. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms10781

    Article  Google Scholar 

  15. Guin T, Settle MJ, Kowalski BA et al (2018) Layered liquid crystal elastomer actuators. Nat Commun 9:1–7. https://doi.org/10.1038/s41467-018-04911-4

    Article  CAS  Google Scholar 

  16. Chen Q, Li Y, Yang Y et al (2019) Durable liquid-crystalline vitrimer actuators. Chem Sci 10:3025–3030. https://doi.org/10.1039/C8SC05358H

    Article  CAS  Google Scholar 

  17. Liu W, Guo LX, Lin BP, Zhang XQ, Sun Y, Yang H (2016) Near-infrared responsive liquid crystalline elastomers containing photothermal conjugated polymers. Macromolecules 49:4023–4030. https://doi.org/10.1021/acs.macromol.6b00640

    Article  CAS  Google Scholar 

  18. Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y (2014) Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 13:36–41. https://doi.org/10.1038/nmat3812

    Article  CAS  Google Scholar 

  19. He Q, Wang Z, Wang Y, Minori A, Tolley MT, Cai S (2019) Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Sci Adv 5:eaax5746. https://doi.org/10.1126/sciadv.aax5746.

    Article  Google Scholar 

  20. Lu X, Zhang H, Fei G et al (2018) Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv Mater 30:1706597. https://doi.org/10.1002/adma.201706597

    Article  Google Scholar 

  21. Shang Y, Liu J, Zhang M et al (2018) Reversible solvent-sensitive actuator with continuous bending/debending process from liquid crystal elastomer-colloidal material. Soft Matter 14:5547–5553. https://doi.org/10.1039/C8SM00927A

    Article  CAS  Google Scholar 

  22. de Haan LT, Sánchez-Somolinos C, Bastiaansen CM, Schenning AP, Broer DJ (2012) Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew Chem 124:12637–12640. https://doi.org/10.1002/anie.201205964

    Article  Google Scholar 

  23. Chen L, Wang M, Guo LX, Lin BP, Yang H (2018) A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing. J Mater Chem C 6:8251–8257. https://doi.org/10.1039/C8TC01236A

    Article  CAS  Google Scholar 

  24. Kamal T, Park SY (2014) Shape-responsive actuator from a single layer of a liquid-crystal polymer. ACS Appl Mater Interfaces 6:18048–18054. https://doi.org/10.1021/am504910h

    Article  CAS  Google Scholar 

  25. Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimagi A (2017) Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater 29:1701814. https://doi.org/10.1002/adma.201701814

    Article  Google Scholar 

  26. Xia Y, Zhang X, Yang S (2018) Instant locking of molecular ordering in liquid crystal elastomers by oxygen-mediated thiol-acrylate click reactions. Angew Chem 130:5767–5770. https://doi.org/10.1002/anie.201800366

    Article  Google Scholar 

  27. Shahsavan H, Salili SM, Jákli A, Zhao B (2017) Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv Mater 29:1604021. https://doi.org/10.1002/adma.201604021

    Article  Google Scholar 

  28. Ryabchun A, Lancia F, Nguindjel AD, Katsonis N (2017) Humidity-responsive actuators from integrating liquid crystal networks in an orienting scaffold. Soft Matter 13:8070–8075. https://doi.org/10.1039/C7SM01505D

    Article  CAS  Google Scholar 

  29. Tang R, Liu Z, Xu D, Liu J, Yu L, Yu H (2015) Optical pendulum generator based on photomechanical liquid-crystalline actuators. ACS Appl Mater Interfaces 7:8393–8397. https://doi.org/10.1021/acsami.5b01732

    Article  CAS  Google Scholar 

  30. Roach DJ, Yuan C, Kuang X et al (2019) Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces 11:19514–19521. https://doi.org/10.1021/acsami.9b04401

    Article  CAS  Google Scholar 

  31. Zhang L, Pan J, Gong C, Zhang A (2019) Multidirectional biomimetic deformation of microchannel programmed metal nanowire liquid crystal networks. J Mater Chem C 7:1066310671. https://doi.org/10.1039/C9TC03625C

    Google Scholar 

  32. Shahsavan H, Aghakhani A, Zeng H et al (2020) Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc Natl Acad Sci U S A 117:5125–5133. https://doi.org/10.1073/pnas.1917952117

    Article  CAS  Google Scholar 

  33. Lu X, Guo S, Tong X, Xia H, Zhao Y (2017) Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv Mater 29:1606467. https://doi.org/10.1002/adma.201606467

    Article  Google Scholar 

  34. Pilz M, da Cunha Y, van FoelenRaak, RJ et al (2019) An untethered magnetic-and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators. Adv Opt Mater 7:1801643. https://doi.org/10.1002/adom.201801643

    Article  Google Scholar 

  35. Dong L, Tong X, Zhang H, Chen M, Zhao Y (2018) Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator. Mater Chem Front 2:1383–1388. https://doi.org/10.1039/c8qm00190a

    Article  CAS  Google Scholar 

  36. Jiang ZC, Xiao YY, Tong X, Zhao Y (2019) Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration of origami and light-fueled locomotion. Angew Chem Int Ed 58:5332–5337. https://doi.org/10.1002/anie.201900470

    Article  CAS  Google Scholar 

  37. Lan R, Sun J, Shen C et al (2020) Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating. Adv Mater 32:1906319. https://doi.org/10.1002/adma.201906319

    Article  CAS  Google Scholar 

  38. Baginska M, Blaiszik BJ, Rajh T, Sottos NR, White SR (2014) Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. J Power Sources 269:735–739. https://doi.org/10.1016/j.jpowsour.2014.07.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Ministry of Science and Technology (MOST) of the Republic of China (Taiwan) for financially supporting this research under Contract MOST 1072923-E-006-001 and MOST 108-2218-E-006-049. This research was also supported in part by Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU).

Author information

Authors and Affiliations

Authors

Contributions

Kai-Ti Chang performed most of the experiments and statistical analyses of the data. Jui-Hsiang Liu wrote the original manuscript, with edits carried out by Chun-Yen Liu and reviewed by all authors. Jui-Hsiang Liu and Chun-Yen Liu supervised the whole project.

Corresponding authors

Correspondence to Chun-Yen Liu or Jui-Hsiang Liu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflicts of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2021_6107_MOESM1_ESM.docx

Composition of each compound, Schematic for arrangement of molecules, TGA diagram, DSC diagram, POM pictures, ATR analysis, SEM pictures, EDS analysis (DOCX 4007 KB)

Supplementary file2 (MPG 4112 KB)

Supplementary file3 (MPG 5042 KB)

Supplementary file4 (MPG 3714 KB)

Supplementary file5 (MPG 3040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, KT., Liu, CY. & Liu, JH. Bioinspired thermal/light-tunable actuators based on predesigned tilted liquid crystal actuators. J Mater Sci 56, 12350–12363 (2021). https://doi.org/10.1007/s10853-021-06107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06107-6

Navigation