Skip to main content
Log in

Theoretical insight into the effect of Br, Na co-doping on electronic structure, photocatalytic and optical characteristics of g-C3N4 using first-principles and optical simulations

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solar photocatalysis splitting water for hydrogen production is a very hot issue nowadays, and great expectations are laid on g-C3N4 due to its low-cost, thermal stability, low toxicity. However, pure g-C3N4 is not perfect and it still has some shortcomings. By using first-principles calculations, Br and Na are considered being co-doped into the g-C3N4 to get whose photocatalytic performance further enhanced. By studying the electronic structure, optical properties, we find that doping Br Na atom can obviously narrow the band gap, and promote the optical absorption characteristics of g-C3N4, which means a better performance in photocatalysis. Furthermore, the optical absorption cross section and optical scattering cross section of two typical morphologies nano particle and nano rode are calculated by optical simulations to analyze the effects of doping on the optical absorption and scattering characteristics, which could provide another view in analyzing photocatalysis mechanisms and can make great difference on future photocatalyst designing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Tafreshi SS, Moshfegh AZ, de Leeuw NH (2019) Mechanism of photocatalytic reduction of \(\text{ CO}_2\) by \(\text{ Ag}_3\text{ PO}_4(111)/\text{g }-\text{ C}_3\text{ N}_4\) nanocomposite: a first-principles study. J Phys Chem C 123(36):22191–22201

    Article  CAS  Google Scholar 

  2. Ren Y, Qi H, Chen Q, Li Y, Ruan L (2019) Optofluidic control using light illuminated plasmonic nanostructure as microvalve. Int J Heat Mass Transf 133:1019–1025

    Article  CAS  Google Scholar 

  3. Zhao Y, Lin Y, Wang G, Jiang Z, Zhang R, Zhu C (2018) Electronic and optical performances of (cu, n) codoped \(\text{ TiO}_2/\text{g }-\text{ C}_3\text{ N}_4\) heterostructure photocatalyst: a spin-polarized DFT+U study. Sol Energy 162:306–316

    Article  CAS  Google Scholar 

  4. Shi L, Wang X, Hu Y, He Y (2020) Investigation of photocatalytic activity through photo-thermal heating enabled by \(\text{ Fe}_3\text{ O}_4{/}\text{ TiO}_2\) composite under magnetic field. Sol Energy 196:505–512

    Article  CAS  Google Scholar 

  5. Li Y, Jin R, Xing Y, Li J, Song S, Liu X, Li M, Jin R (2016) Macroscopic foam-like holey ultrathin \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets for drastic improvement of visible-light photocatalytic activity. Adv Energy Mater 6(24):1601273

    Article  Google Scholar 

  6. Papailias I, Todorova N, Giannakopoulou T, Ioannidis N, Dallas P, Dimotikali D, Trapalis C (2020) Novel torus shaped \(\text{ g }-\text{ C}_3\text{ N}_4\) photocatalysts. Appl Catal B 268:118733

    Article  CAS  Google Scholar 

  7. Lu M, Li Q, Zhang C, Fan X, Li L, Dong Y, Chen G, Shi H (2020) Remarkable photocatalytic activity enhancement of \(\text{ CO}_2\) conversion over 2D/2D \(\text{ g }-\text{ C}_3\text{ N}_4\)/\(\text{ BiVO}_4\) z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 160:342–352

    Article  CAS  Google Scholar 

  8. Zheng D, Cao XN, Wang X (2016) Precise formation of a hollow carbon nitride structure with a janus surface to promote water splitting by photoredox catalysis. Angew Chem 128(38):11684–11688

    Article  Google Scholar 

  9. Che H, Liu C, Che G, Liao G, Dong H, Li C, Song N, Li C (2020) Facile construction of porous intramolecular \(\text{ g }-\text{ C}_3\text{ N}_4\)-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior \(\text{ H}_2\) evolution. Nano Energy 67:104273

    Article  CAS  Google Scholar 

  10. Zhang X, He S et al (2020a) \(\text{ WO}_x\)/\(\text{ g }-\text{ C}_3\text{ N}_4\) layered heterostructures with controlled crystallinity towards superior photocatalytic degradation and \(\text{ H}_2\) generation. Carbon 156:488–498

    Article  CAS  Google Scholar 

  11. Zhang G, Zhu X, Chen D, Li N, Xu Q, Li H, He J, Xu H, Lu J (2020b) Hierarchical z-scheme \(\text{ gC}_3\text{ N}_4\)/au/\(\text{ ZnIn}_2\text{ S}_4\) photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environ Sci Nano 7(2):676–687

    Article  CAS  Google Scholar 

  12. Li W, Wang X, Li M, Sa H, Ma Q, Wang X (2020) Construction of z-scheme and pn heterostructure: three-dimensional porous \(\text{ g }-\text{ C}_3\text{ N}_4\)/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Appl Catal B 268:118384

    Article  CAS  Google Scholar 

  13. Wei B, Wang W, Sun J, Mei Q, An Z, Cao H, Han D, Xie J, Zhan J, He M (2020) Insight into the effect of boron doping on electronic structure, photocatalytic and adsorption performance of \(\text{ g }-\text{ C}_3\text{ N}_4\) by first-principles study. Appl Surf Sci 511:145549

    Article  CAS  Google Scholar 

  14. Thorat N, Yadav A, Yadav M, Gupta S, Varma R, Pillai S, Fernandes R, Patel M, Patel N (2019) Ag loaded B doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheet with efficient properties for photocatalysis. J Environ Manag 247:57–66

    Article  CAS  Google Scholar 

  15. Yan Q, Huang GF, Li DF, Zhang M, Pan AL, Huang WQ (2018) Facile synth Sulfur-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets for photocatalysis: Z-scheme water splitting and decreased biofoulingesis and superior photocatalytic and electrocatalytic performances of porous B-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets. J Mater Sci Technol 34(12):2515–2520

    Article  Google Scholar 

  16. Lin YR, Dizon GVC, Yamada K, Liu CY, Venault A, Lin HY, Yoshida M, Hu C (2020) Sulfur-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J Colloid Interface Sci 567:202–212

    Article  CAS  Google Scholar 

  17. Li Y, Wang S, Chang W, Zhang L, Wu Z, Song S, Xing Y (2019) Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets with extended visible-light response. J Mater Chem A 7(36):20640–20648

    Article  CAS  Google Scholar 

  18. Song P, Liang S, Cui J, Ren D, Duan R, Yang Q, Sun S (2019) Purposefully designing novel hydroxylated and carbonylated melamine towards the synthesis of targeted porous oxygen-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets for highly enhanced photocatalytic hydrogen production. Catal Sci Technol 9(18):5150–5159

    Article  CAS  Google Scholar 

  19. Zhang S, Liu Y, Gu P, Ma R, Wen T, Zhao G, Li L, Ai Y, Hu C, Wang X (2019) Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous \(\text{ g }-\text{ C}_3\text{ N}_4\): mechanism exploration from both experimental and DFT studies. Appl Catal B 248:1–10

    Article  CAS  Google Scholar 

  20. Guo F, Li M, Ren H, Huang X, Shu K, Shi W, Lu C (2019) Facile bottom-up preparation of Cl-doped porous \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep Purif Technol 228:115770

    Article  CAS  Google Scholar 

  21. Yang H, Zhou Y, Wang Y, Hu S, Wang B, Liao Q, Li H, Bao J, Ge G, Jia S (2018) Three-dimensional flower-like phosphorus-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) with a high surface area for visible-light photocatalytic hydrogen evolution. J Mater Chem A 6(34):16485–16494

    Article  CAS  Google Scholar 

  22. Guo S, Tang Y, Xie Y, Tian C, Feng Q, Zhou W, Jiang B (2017) P-doped tubular \(\text{ g }-\text{ C}_3\text{ N}_4\) with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl Catal B 218:664–671

    Article  CAS  Google Scholar 

  23. Xie M, Tang J, Kong L, Lu W, Natarajan V, Zhu F, Zhan J (2019) Cobalt doped \(\text{ g }-\text{ C}_3\text{ N}_4\) activation of peroxymonosulfate for monochlorophenols degradation. Chem Eng J 360:1213–1222

    Article  CAS  Google Scholar 

  24. Deng P, Xiong J, Lei S, Wang W, Ou X, Xu Y, Xiao Y, Cheng B (2019) Nickel formate induced high-level in situ Ni-doping of \(\text{ g }-\text{ C}_3\text{ N}_4\) for a tunable band structure and enhanced photocatalytic performance. J Mater Chem A 7(39):22385–22397

    Article  CAS  Google Scholar 

  25. Shen H, Li M, Guo W, Li G, Xu C (2020) P, K co-doped porous \(\text{ g }-\text{ C}_3\text{ N}_4\) with enhanced photocatalytic activity synthesized in vapor and self-producing \(\text{ NH}_3\) atmosphere. Appl Surf Sci 507:145086

    Article  CAS  Google Scholar 

  26. Zheng X, Zhang Q, Chen T, Wu Y, Hao J, Tan C, Chen P, Wang F, Liu H, Lv W et al (2020) A novel synthetic carbon and oxygen doped stalactite-like \(\text{ g }-\text{ C}_3\text{ N}_4\) for broad-spectrum-driven indometacin degradation. J Hazard Mater 386:121961

    Article  CAS  Google Scholar 

  27. Nguyen TB, Huang C, Ra D, Chen CW, Dong CD (2020) Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped \(\text{ g }-\text{ C}_3\text{ N}_4\) (Ag-P@ UCN) photocatalyst in water. Chem Eng J 384:123383

    Article  CAS  Google Scholar 

  28. Yi F, Gan H, Jin H, Zhao W, Zhang K, Jin H, Zhang H, Qian Y, Ma J (2020) Sulfur-and chlorine-co-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanosheets with enhanced active species generation for boosting visible-light photodegradation activity. Sep Purif Technol 233:115997

    Article  CAS  Google Scholar 

  29. Huang J, Li D, Li R, Zhang Q, Chen T, Liu H, Liu Y, Lv W, Liu G (2019) An efficient metal-free phosphorus and oxygen co-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem Eng J 374:242–253

    Article  CAS  Google Scholar 

  30. Chen KL, Zhang SS, Yan JQ, Peng W, Lei DP, Huang JH (2019) Excellent visible light photocatalytic efficiency of Na and S co-doped \(\text{ g }-\text{ C}_3\text{ N}_4\) nanotubes for \(\text{ H}_2\) production and organic pollutant degradation. Int J Hydrogen Energy 44(60):31916–31929

    Article  CAS  Google Scholar 

  31. Ruan ZH, Li YD, Yuan Y, Lin KF, Tan HP (2019) Energy-absorption-based explanation of the photocatalytic activity enhancement mechanism of \(\text{ TiO}_2\) nanofibers. Int J Hydrogen Energy 44(39):21569–21576

    Article  CAS  Google Scholar 

  32. Li Y, Ruan Z, He Y, Li J, Li K, Jiang Y, Xu X, Yuan Y, Lin K (2018) In situfabrication of hierarchically porous \(\text{ g }-\text{ C}_3\text{ N}_4\) and understanding on its enhanced photocatalytic activity based on energy absorption. Appl Catal B 236:64–75

    Article  CAS  Google Scholar 

  33. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Wang Y (1996a) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996b) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  37. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  38. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  39. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  Google Scholar 

  40. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  Google Scholar 

  41. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215

    Article  CAS  Google Scholar 

  42. Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73(4):045112

    Article  Google Scholar 

  43. Ren Y, Chen Q, Qi H, Ruan L, Dai J (2018) Phase transition induced by localized surface plasmon resonance of nanoparticle assemblies. Int J Heat Mass Transf 127:244–252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51776051). We appreciate the software support from the High Performance Computing Center (HPCC) of Harbin Institute of Technology. A very special acknowledgement is made to the editors and referees who made important comments to improve this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, ZH., Gao, XY., Yuan, Y. et al. Theoretical insight into the effect of Br, Na co-doping on electronic structure, photocatalytic and optical characteristics of g-C3N4 using first-principles and optical simulations. J Mater Sci 56, 10382–10392 (2021). https://doi.org/10.1007/s10853-021-05954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05954-7

Navigation