Skip to main content
Log in

Metastable phase diagram on heating in quenched Ti-Nb high-temperature shape memory alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metastable phase diagrams of β (BCC)-Ti high-temperature shape memory alloys (HTSMAs) have been investigated extensively, where however β→isothermal ω (iso-ω, hexagonal) transition upon heating has not been accessed. Following α” (orthorhombic)→β reverse martensitic transformation on heating, iso-ω precipitation is commonly encountered. These two transitions may overlap within certain composition range, but have not been clearly differentiated. It is of vital importance for the understanding of the subsequent transition behaviors. In this paper, phase transformations upon heating at various heating rates were characterized in quenched Ti-(16–25 at.%)Nb HTSMAs. In contrast to the linear increase in As (the starting temperature of α”→β transition) with decreasing Nb-content, ωs (the starting temperature of β→iso-ω transition) exhibits normal decrease firstly and shows abnormal increase below 20Nb. It is because iso-ω precipitates only in the reversed β phase but not in α” martensite proved by transmission electron microscopy observations. Namely, β→iso-ω transition is postponed to higher temperature due to the suppression of α” martensite below 20Nb. On this basis, the characteristics of both transformations can be determined for Ti-Nb below 20Nb by proper peak deconvolution. New metastable phase diagrams of Ti-Nb are formulated, including both α”→β and β→iso-ω transitions upon heating. Moreover, effective activation energies for β→iso-ω transition during isochronal annealing are determined by the Kissinger method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315. https://doi.org/10.1179/095066010x12646898728363

    Article  CAS  Google Scholar 

  2. Zhang J, Chen T, Li W, Bednarcik J, Dippel A-C (2020) High temperature superelasticity realized in equiatomic TiNi conventional shape memory alloy by severe cold rolling. Mater Design 193:108875. https://doi.org/10.1016/j.matdes.2020.108875

    Article  CAS  Google Scholar 

  3. Zhao X, Niinomi M, Nakai M, Hieda J (2012) Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater 8:1990–1997. https://doi.org/10.1016/j.actbio.2012.02.004

    Article  CAS  Google Scholar 

  4. Gao J, Nutter J, Liu X, Guan D, Huang Y, Dye D, Rainforth WM (2018) Segregation mediated heterogeneous structure in a metastable β titanium alloy with a superior combination of strength and ductility. Sci Rep. https://doi.org/10.1038/s41598-018-25899-3

    Article  Google Scholar 

  5. Dong R, Kou H, Wu L, Yang L, Zhao Y, Hou H (2020) β to ω transformation strain associated with the precipitation of α phase in a metastable β titanium alloy. J Mater Sci. https://doi.org/10.1007/s10853-020-05231-z

    Article  Google Scholar 

  6. Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti-Ta alloys. Int J Mater Res 105:156–167. https://doi.org/10.3139/146.111010

    Article  CAS  Google Scholar 

  7. Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mater Res 106:331–341. https://doi.org/10.3139/146.111189

    Article  CAS  Google Scholar 

  8. Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Mater 2:073609. https://doi.org/10.1103/PhysRevMaterials.2.073609

    Article  CAS  Google Scholar 

  9. Moffat DL, Larbalestier DC (1988) The competition between the alpha-phases and omega-phases in aged Ti-Nb alloys. Metall Trans A 19:1687–1694. https://doi.org/10.1007/bf02645136

    Article  Google Scholar 

  10. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys. Acta Mater 54:2419–2429. https://doi.org/10.1016/j.actamat.2006.01.019

    Article  CAS  Google Scholar 

  11. Obbard EG, Hao YL, Talling RJ, Li SJ, Zhang YW, Dye D, Yang R (2011) The effect of oxygen on alpha ’ ’ martensite and superelasticity in Ti-24Nb-4Zr-8Sn. Acta Mater 59:112–125. https://doi.org/10.1016/j.actamat.2010.09.015

    Article  CAS  Google Scholar 

  12. Sun B, Meng XL, Gao ZY, Cai W (2019) Study on the deformation mechanism of the martensitic Ti–16Nb high temperature shape memory alloy. Mater Sci Eng A 742:590–596. https://doi.org/10.1016/j.msea.2018.07.051

    Article  CAS  Google Scholar 

  13. Bönisch M, Panigrahi A, Stoica M, Calin M, Ahrens E, Zehetbauer M, Skrotzki W, Eckert J (2017) Giant thermal expansion and alpha-precipitation pathways in Ti-alloys. Nat Commun 8:1429. https://doi.org/10.1038/s41467-017-01578-1

    Article  CAS  Google Scholar 

  14. Al-Zain Y, Kim HY, Hosoda H, Nam TH, Miyazaki S (2010) Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater 58:4212–4223. https://doi.org/10.1016/j.actamat.2010.04.013

    Article  CAS  Google Scholar 

  15. Gao J, Huang Y, Guan D, Knowles AJ, Ma L, Dye D, Rainforth WM (2018) Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate. Acta Mater 152:301–314. https://doi.org/10.1016/j.actamat.2018.04.035

    Article  CAS  Google Scholar 

  16. Xiong C, Li Y, Zhang J, Wang Y, Qu W, Ji Y, Cui L, Ren X (2021) Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys. J Alloys Compd 853:157090. https://doi.org/10.1016/j.jallcom.2020.157090

    Article  CAS  Google Scholar 

  17. Bönisch M, Panigrahi A, Calin M, Waitz T, Zehetbauer M, Skrotzki W, Eckert J (2017) Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloys Compd 697:300–309. https://doi.org/10.1016/j.jallcom.2016.12.108

    Article  CAS  Google Scholar 

  18. Wang W, Zhang X, Mei W, Sun J (2020) Role of omega phase evolution in plastic deformation of twinning-induced plasticity β Ti–12V–2Fe–1Al alloy. Mater Design 186:108282. https://doi.org/10.1016/j.matdes.2019.108282

    Article  CAS  Google Scholar 

  19. Prima F, Vermaut P, Texier G, Ansel D, Gloriant T (2006) Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy. Scr Mater 54:645–648. https://doi.org/10.1016/j.scriptamat.2005.10.024

    Article  CAS  Google Scholar 

  20. Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater 57:2136–2147. https://doi.org/10.1016/j.actamat.2009.01.007

    Article  CAS  Google Scholar 

  21. Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of ω-assisted α phase formation in near β-Ti alloys. Scr Mater 104:75–78. https://doi.org/10.1016/j.scriptamat.2015.04.007

    Article  CAS  Google Scholar 

  22. Liang Q, Zheng Y, Wang D, Hao Y, Yang R, Wang Y, Fraser HL (2019) Nano-scale structural non-uniformities in gum like Ti-24Nb-4Zr-8Sn metastable β-Ti alloy. Scr Mater 158:95–99. https://doi.org/10.1016/j.scriptamat.2018.08.043

    Article  CAS  Google Scholar 

  23. Zháňal P, Harcuba P, Hájek M, Smola B, Stráský J, Šmilauerová J, Veselý J, Janeček M (2018) Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo. J Mater Sci 53:837–845. https://doi.org/10.1007/s10853-017-1519-2

    Article  CAS  Google Scholar 

  24. Zhang J, Tasan CC, Lai MJ, Dippel AC, Raabe D (2017) Complexion-mediated martensitic phase transformation in Titanium. Nat Commun 8:14210. https://doi.org/10.1038/ncomms14210

    Article  CAS  Google Scholar 

  25. Nag S, Devaraj A, Srinivasan R et al (2011) Novel Mixed-Mode Phase Transition Involving a Composition-Dependent Displacive Component. Phys Rev Lett 106:245701. https://doi.org/10.1103/PhysRevLett.106.245701

    Article  CAS  Google Scholar 

  26. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  27. Huang L-F, Grabowski B, Zhang J, Lai M-J, Tasan CC, Sandlöbes S, Raabe D, Neugebauer J (2016) From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium–transition metal alloys. Acta Mater. https://doi.org/10.1016/j.actamat.2016.04.059

    Article  Google Scholar 

  28. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444–3458. https://doi.org/10.1016/j.actamat.2010.02.019

    Article  CAS  Google Scholar 

  29. Kim HY, Hashimoto S, Kim JI, Inamura T, Hosoda H, Miyazaki S (2006) Effect of Ta addition on shape memory behavior of Ti-22Nb alloy. Mater Sci Eng A 417:120–128. https://doi.org/10.1016/j.msea.2005.10.065

    Article  CAS  Google Scholar 

  30. Mantani Y, Tajima M (2006) Phase transformation of quenched alpha ’ ’ martensite by aging in Ti-Nb alloys. Mater Sci Eng A 438:315–319. https://doi.org/10.1016/j.msea.2006.02.180

    Article  CAS  Google Scholar 

  31. Cremasco A, Andrade PN, Contieri RJ, Lopes ESN, Afonso CRM, Caram R (2011) Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Mater Design 32:2387–2390. https://doi.org/10.1016/j.matdes.2010.11.012

    Article  CAS  Google Scholar 

  32. Lopes ESN, Cremasco A, Afonso CRM, Caram R (2011) Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Mater Charact 62:673–680. https://doi.org/10.1016/j.matchar.2011.04.015

    Article  CAS  Google Scholar 

  33. Bönisch M, Calin M, Waitz T, Panigrahi A, Zehetbauer M, Gebert A, Skrotzki W, Eckert J (2013) Thermal stability and phase transformations of martensitic Ti–Nb alloys. Sci Technol Adv Mater 14:055004. https://doi.org/10.1088/1468-6996/14/5/055004

    Article  CAS  Google Scholar 

  34. Zhang J, Fan GL, Zhou YM, Ding XD, Otsuka K, Nakamura K, Sun J, Ren XB (2007) Does order-disorder transition exist in near-stoichiometric Ti-Ni shape memory alloys? Acta Mater 55:2897–2905. https://doi.org/10.1016/j.actamat.2006.12.028

    Article  CAS  Google Scholar 

  35. Kent D, Pas S, Zhu SM, Wang G, Dargusch MS (2012) Thermal analysis of precipitation reactions in a Ti-25Nb-3Mo-3Zr-2Sn alloy. Appl Phys A 107:835–841. https://doi.org/10.1007/s00339-012-6778-9

    Article  CAS  Google Scholar 

  36. Li Q, Ma G, Li J et al (2019) Development of low-young’s modulus Ti–Nb-based alloys with Cr addition. J Mater Sci 54:8675–8683. https://doi.org/10.1007/s10853-019-03457-0

    Article  CAS  Google Scholar 

  37. Wang CH, Jiang H, Cao GH (2018) Effects of step-quenching on the α″ martensitic transformation, α precipitation, and mechanical properties of multiphase Ti–10Mo alloy. J Mater Sci 53:11765–11778. https://doi.org/10.1007/s10853-018-2438-6

    Article  CAS  Google Scholar 

  38. Wang HL, Shah SAA, Hao YL et al (2017) Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation. J Alloys Compd 700:155–158. https://doi.org/10.1016/j.jallcom.2016.12.406

    Article  CAS  Google Scholar 

  39. Niendorf T, Krooß P, Batyrsina E et al (2014) Functional and structural fatigue of titanium tantalum High temperature shape memory alloys (HT SMAs). Mater Sci Eng A 620:359–366. https://doi.org/10.1016/j.msea.2014.10.038

    Article  CAS  Google Scholar 

  40. Moffat DL (1985) Materials ScienceUniversity of Wisconsin, Madison

  41. Okunishi E, Kawai T, Mitsuhara M, Farjami S, Itakura M, Hara T, Nishida M (2013) HAADF-STEM studies of athermal and isothermal ω-phases in β-Zr alloy. J Alloys Compd 577:S713–S716. https://doi.org/10.1016/j.jallcom.2011.12.115

    Article  CAS  Google Scholar 

  42. Zhang JL, Tasan CC, Lai ML, Zhang J, Raabe D (2015) Damage resistance in gum metal through cold work-induced microstructural heterogeneity. J Mater Sci. https://doi.org/10.1007/s10853-015-9105-y

    Article  Google Scholar 

  43. Zhang Y, Liu H, Jin Z (2001) Thermodynamic assessment of the Nb-Ti system. Calphad 25:305–317. https://doi.org/10.1016/S0364-5916(01)00051-7

    Article  CAS  Google Scholar 

  44. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  45. Lu K, Lück R, Predel B (1993) Temperature vs. heating rate transformation diagram for a transition from the amorphous to the nanocrystalline state. J Alloys Compd 201:229–234. https://doi.org/10.1016/0925-8388(93)90889-U

    Article  CAS  Google Scholar 

  46. Wang H (2018) Ex situ and in situ TEM investigations of carbide precipitation in a 10Cr martensitic steel. J Mater Sci 53:7845–7856. https://doi.org/10.1007/s10853-018-2075-0

    Article  CAS  Google Scholar 

  47. Mittemeijer EJ (2010) Fundamentals of materials science: the microstructure-property relationship using metals as model systems. Springer, Berlin Heidelberg, Berlin

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [grant number 2016YFB0701302] and National Natural Science Foundation of China [grant numbers 51621063, 51831006, 51931004, 51501145]. We thank Dr. Guo Shengwu, Dr. Zhu Ruihua, Dr. Zhou Shanlin, Dr. Wang Wei, Dr. Ren Zijun and Dr. Huang Chang for their kind assistances during experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Y. & Li, W. Metastable phase diagram on heating in quenched Ti-Nb high-temperature shape memory alloys. J Mater Sci 56, 11456–11468 (2021). https://doi.org/10.1007/s10853-021-05814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05814-4

Navigation