Skip to main content
Log in

A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A type of silsesquioxane-based flexible polyimide aerogel was synthesized by 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 4,4′-diaminodiphenyl and octa(aminopropylsilsesquioxane) (POSS-NH2) with a facile thermal curing and atmospheric drying process. POSS-NH2 was introduced into the polyimide backbone as a cross-linking agent. The obtained aerogel possessed high hydrophobicity with a water contact angle exceeding 143°. And the aerogels showed good cyclic adsorption capacity for various organic solvents, such as acetone, methanol, ethyl acetate, etc. After 15 adsorption experiments, the original adsorption capacity of the aerogels (more than 3 times their own weight) was still maintained. SEM and BET confirmed that the introduction of POSS-NH2 could form a larger pore structure inside the aerogel, thereby achieving an improvement in adsorption performance. The results indicated this kind of aerogel might be flexibly utilized as adsorbent materials for oil pollutants and harmful organic reagents in the field of wastewater treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7(13):7373–7381. https://doi.org/10.1021/acsami.5b00846

    Article  CAS  Google Scholar 

  2. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater 25(30):4192–4198. https://doi.org/10.1002/adma.201301480

    Article  CAS  Google Scholar 

  3. Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21(24):4699–4704. https://doi.org/10.1002/adfm.201101090

    Article  CAS  Google Scholar 

  4. Singh R, Samal K, Dash RR, Bhunia P (2019) Vermifiltration as a sustainable natural treatment technology for the treatment and reuse of wastewater: a review. J Environ Manag 247:140–151. https://doi.org/10.1016/j.jenvman.2019.06.075

    Article  CAS  Google Scholar 

  5. Goh PS, Ismail AF (2018) A review on inorganic membranes for desalination and wastewater treatment. Desalination 434:60–80. https://doi.org/10.1016/j.desal.2017.07.023

    Article  CAS  Google Scholar 

  6. Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, Pan Q (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1(17):5386. https://doi.org/10.1039/c3ta00125c

    Article  CAS  Google Scholar 

  7. Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3(12):4552–4556. https://doi.org/10.1021/am201352w

    Article  CAS  Google Scholar 

  8. Shemer H, Sagiv A, Holenberg M, Zach Maor A (2018) Filtration characteristics of threaded microfiber water filters. Desalination 431:80–85. https://doi.org/10.1016/j.desal.2017.07.009

    Article  CAS  Google Scholar 

  9. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25(14):2071–2076. https://doi.org/10.1002/adma.201204520

    Article  CAS  Google Scholar 

  10. Li H, Li A, Shuang C, Zhou Q, Li W (2014) Fouling of anion exchange resin by fluorescence analysis in advanced treatment of municipal wastewaters. Water Res 66:233–241. https://doi.org/10.1016/j.watres.2014.08.027

    Article  CAS  Google Scholar 

  11. Ghoussoub YE, Fares HM, Delgado JD, Keller LR, Schlenoff JB (2018) Antifouling ion-exchange resins. ACS Appl Mater Interfaces 10(48):41747–41756. https://doi.org/10.1021/acsami.8b12865

    Article  CAS  Google Scholar 

  12. Tao M, Xue L, Liu F, Jiang L (2014) An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv Mater 26(18):2943–2948. https://doi.org/10.1002/adma.201305112

    Article  CAS  Google Scholar 

  13. Leventis N, Mulik S, Wang X, Dass A, Patil VU, Sotiriou-Leventis C, Lu H, Churu G, Capecelatro A (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J Non-Cryst Solids 354(2–9):632–644. https://doi.org/10.1016/j.jnoncrysol.2007.06.094

    Article  CAS  Google Scholar 

  14. Bellunato T, Braem A, Buzykaev AR, Calvi M, Chesi E, Danilyuk AF, Easo S, Hansen C, Jolly S, Joram C, Kravchenko EA, Liko D, Matteuzzi C, Musy M, Negri P, Neufeld N, Onuchin AP, Seguinot J, Weilhammer P, Wotton S (2003) Aerogel as Cherenkov radiator for RICH detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Dect Assoc Equip 502(1):227–230. https://doi.org/10.1016/s0168-9002(03)00278-x

    Article  CAS  Google Scholar 

  15. Kim J, Kwon J, Kim S-I, Kim M, Lee D, Lee S, Kim G, Lee J, Han H (2016) One-step synthesis of nano-porous monolithic polyimide aerogel. Microporous Mesoporous Mater 234:35–42. https://doi.org/10.1016/j.micromeso.2016.06.037

    Article  CAS  Google Scholar 

  16. Jalili V, Barkhordari A, Heidari M (2019) The role of aerogel-based sorbents in microextraction techniques. Microchem J 147:948–954. https://doi.org/10.1016/j.microc.2019.04.028

    Article  CAS  Google Scholar 

  17. Bi H, Huang X, Wu X, Cao X, Tan C, Yin Z, Lu X, Sun L, Zhang H (2014) Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents. Small 10(17):3544–3550. https://doi.org/10.1002/smll.201303413

    Article  CAS  Google Scholar 

  18. McEnaney K, Weinstein L, Kraemer D, Ghasemi H, Chen G (2017) Aerogel-based solar thermal receivers. Nano Energy 40:180–186. https://doi.org/10.1016/j.nanoen.2017.08.006

    Article  CAS  Google Scholar 

  19. Lopez-Iglesias C, Barros J, Ardao I, Monteiro FJ, Alvarez-Lorenzo C, Gomez-Amoza JL, Garcia-Gonzalez CA (2019) Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr Polym 204:223–231. https://doi.org/10.1016/j.carbpol.2018.10.012

    Article  CAS  Google Scholar 

  20. Hosseini H, Kokabi M, Mousavi SM (2018) BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer 137:82–96. https://doi.org/10.1016/j.polymer.2017.12.068

    Article  CAS  Google Scholar 

  21. Lakatos Á (2019) Stability investigations of the thermal insulating performance of aerogel blanket. Energy Build 185:103–111. https://doi.org/10.1016/j.enbuild.2018.12.029

    Article  Google Scholar 

  22. Liu J, Zhang Q, Xia Q, Dong J, Xu Q (2012) Synthesis, characterization and properties of polyimides derived from a symmetrical diamine containing bis-benzimidazole rings. Polym Degrad Stab 97(6):987–994. https://doi.org/10.1016/j.polymdegradstab.2012.03.010

    Article  CAS  Google Scholar 

  23. Bu Q, Zhang S, Li H, Li Y, Gong C, Yang F (2011) Preparation and properties of thermally stable polyimides derived from asymmetric trifluoromethylated aromatic diamines and various dianhydrides. Polym Degrad Stab 96(10):1911–1918. https://doi.org/10.1016/j.polymdegradstab.2011.07.003

    Article  CAS  Google Scholar 

  24. Guo H, Dewey OS, McCorkle LS, Meador MAB, Pasquali M (2019) Polyimide aerogels as lightweight dielectric insulators for carbon nanotube cables. ACS Appl Polym Mater 1(7):1680–1688. https://doi.org/10.1021/acsapm.9b00241

    Article  CAS  Google Scholar 

  25. Pantoja M, Boynton N, Cavicchi KA, Dosa B, Cashman JL, Meador MAB (2019) Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl Mater Interfaces 11(9):9425–9437. https://doi.org/10.1021/acsami.8b20420

    Article  CAS  Google Scholar 

  26. Fan W, Zhang X, Zhang Y, Zhang Y, Liu T (2019) Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 173:47–52. https://doi.org/10.1016/j.compscitech.2019.01.025

    Article  CAS  Google Scholar 

  27. Liao WH, Yang SY, Hsiao ST, Wang YS, Li SM, Ma CC, Tien HW, Zeng SJ (2014) Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl Mater Interfaces 6(18):15802–15812. https://doi.org/10.1021/am504342j

    Article  CAS  Google Scholar 

  28. Zhao Y, Lu Q, Chen D, Wei Y (2006) Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers. J Mater Chem 16(46):4504. https://doi.org/10.1039/b608981j

    Article  CAS  Google Scholar 

  29. Meador MAB, Agnello M, McCorkle L, Vivod SL, Wilmoth N (2016) Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces 8(42):29073–29079. https://doi.org/10.1021/acsami.6b10248

    Article  CAS  Google Scholar 

  30. Zhang Y, Kang ET, Neoh KG, Huang W, Huan ACH, Zhang H, Lamb RN (2002) Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene. Polymer 43(26):7279–7288. https://doi.org/10.1016/S0032-3861(02)00711-5

    Article  CAS  Google Scholar 

  31. Guo H, Meador MAB, McCorkle L, Quade DJ, Guo J, Hamilton B, Cakmak M (2012) Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces 4(10):5422–5429. https://doi.org/10.1021/am301347a

    Article  CAS  Google Scholar 

  32. Hou YG, Zhang QY, Zhang HP (2012) Fast, two-steps syntheses and characterization of octa(aminopropylsilsesquioxane). Adv Mater Res 472–475:1170–1178. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1170

    Article  CAS  Google Scholar 

  33. Hamciuc C, Hamciuc E, Serbezeanu D, Vlad-Bubulac T, Cazacu M (2011) Phosphorus-containing poly(ester-imide)–polydimethylsiloxane copolymers. Polym Int 60(2):312–321. https://doi.org/10.1002/pi.2950

    Article  CAS  Google Scholar 

  34. Bhagat SD, Kim Y-H, Ahn Y-S, Yeo J-G (2006) Textural properties of ambient pressure dried water-glass based silica aerogel beads: one day synthesis. Microporous Mesoporous Mater 96(1–3):237–244. https://doi.org/10.1016/j.micromeso.2006.07.002

    Article  CAS  Google Scholar 

  35. Li Z, Cheng X, He S, Shi X, Yang H (2015) Characteristics of ambient-pressure-dried aerogels synthesized via different surface modification methods. J Sol-Gel Sci Technol 76(1):138–149. https://doi.org/10.1007/s10971-015-3760-y

    Article  CAS  Google Scholar 

  36. Lermontov SA, Malkova AN, Yurkova LL, Straumal EA, Gubanova NN, Baranchikov AY, Ivanov VK (2014) Diethyl and methyl-tert-buthyl ethers as new solvents for aerogels preparation. Mater Lett 116:116–119. https://doi.org/10.1016/j.matlet.2013.10.080

    Article  CAS  Google Scholar 

  37. Rojas F, Kornhauser I, Felipe C, Esparza JM, Cordero S, Domínguez A, Riccardo JL (2002) Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Phys Chem Chem Phys 4(11):2346–2355. https://doi.org/10.1039/b108785a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Shandong Provincial Natural Science Foundation (ZR2019QB019), National Natural Science Foundation of China (51872150), Shandong Provincial Natural Science Foundation (ZR2018MB034), Science and technology support plan for Youth Innovation of colleges and universities in Shandong Province (2020KJC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuetao Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Qiu, H., Sun, J. et al. A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater. J Mater Sci 56, 3576–3588 (2021). https://doi.org/10.1007/s10853-020-05460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05460-2

Navigation