Skip to main content

Advertisement

Log in

Spray-drying-derived amorphous calcium phosphate: a multi-scale characterization

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous calcium orthophosphates (ACP) are bioactive compounds presenting high interest as bone substitute. However, the synthesis of such metastable products requires special attention as they can rapidly evolve into a crystalline phase during the elaboration process. The resulting increased stability generally leads to less bioactive reactive materials. Among the various strategies developed to obtain stable form of ACP, the use of spray drying is an effective and reproducible route. Compared to previous works, this study aims to demonstrate for the first time the feasibility of ACP elaboration by spray drying directly from a single solution of selected precursors. Moreover, structuration of the spray-dried powders was determined at different length scales, demonstrating a hierarchical organization from nanometric clusters to particles aggregates. These complementary analyses highlighted a thorough mechanism of particles formation during processing. The effect of the initial composition of the solution was observed, and it was demonstrated that there is a correlation with the purity of the final product that may be modulated. In addition, ACP powders were found to be highly reactive in aqueous medium and their fast transformation into low crystalline apatite suggests a good suitability for biomedical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif Tissue Int 79:354–359. https://doi.org/10.1007/s00223-006-0011-9

    Article  CAS  Google Scholar 

  2. Lotsari A, Rajasekharan AK, Halvarsson M, Andersson M (2018) Transformation of amorphous calcium phosphate to bone-like apatite. Nat Commun 9(1):1–11. https://doi.org/10.1038/s41467-018-06570-x

    Article  CAS  Google Scholar 

  3. Dey A, Bomans PHH, Müller FA et al (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9:1010–1014. https://doi.org/10.1038/nmat2900

    Article  CAS  Google Scholar 

  4. Ridi F, Meazzini I, Castroflorio B et al (2017) Functional calcium phosphate composites in nanomedicine. Adv Colloid Interface Sci 244:281–295. https://doi.org/10.1016/j.cis.2016.03.006

    Article  CAS  Google Scholar 

  5. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci 105:12748–12753. https://doi.org/10.1073/pnas.0803354105

    Article  Google Scholar 

  6. Mahamid J, Aichmayer B, Shimoni E et al (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci 107:6316–6321. https://doi.org/10.1073/pnas.0914218107

    Article  Google Scholar 

  7. Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045. https://doi.org/10.1016/j.actbio.2013.06.014

    Article  CAS  Google Scholar 

  8. Dorozhkin SV (2009) Calcium orthophosphate cements and concretes. Materials 2(1):221–291. https://doi.org/10.3390/ma2010221

    Article  CAS  Google Scholar 

  9. Skrtic D, Antonucci JM, Eanes ED (2003) Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 108:167–182. https://doi.org/10.6028/jres.108.017

    Article  CAS  Google Scholar 

  10. Zhao J, Liu Y, Bin SW, Yang X (2012) First detection, characterization, and application of amorphous calcium phosphate in dentistry. J Dent Sci 7:316–323. https://doi.org/10.1016/j.jds.2012.09.001

    Article  Google Scholar 

  11. Brečević L, Hlady V, Füredi-Milhofer H (1987) Influence of gelatin on the precipitation of amorphous calcium phosphate. Colloids Surf 28:301–313. https://doi.org/10.1016/0166-6622(87)80191-9

    Article  Google Scholar 

  12. Habraken WJEM, Tao J, Brylka LJ et al (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507–1512. https://doi.org/10.1038/ncomms2490

    Article  CAS  Google Scholar 

  13. Betts F, Posner AS (1974) An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull 9:353–360. https://doi.org/10.1016/0025-5408(74)90087-7

    Article  CAS  Google Scholar 

  14. Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351. https://doi.org/10.1021/cm980062c

    Article  CAS  Google Scholar 

  15. Termine JD, Eanes ED (1972) Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res 10:171–197. https://doi.org/10.1007/BF02012548

    Article  CAS  Google Scholar 

  16. Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials (Basel) 2:399–498. https://doi.org/10.3390/ma2020399

    Article  CAS  Google Scholar 

  17. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378. https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  Google Scholar 

  18. Baig AA, Fox JL, Young RA et al (1999) Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int 64:437–449. https://doi.org/10.1007/PL00005826

    Article  CAS  Google Scholar 

  19. Bussola Tovani C, Gloter A, Azaïs T et al (2019) Formation of stable strontium-rich amorphous calcium phosphate: possible effects on bone mineral. Acta Biomater 92:315–324. https://doi.org/10.1016/j.actbio.2019.05.036

    Article  CAS  Google Scholar 

  20. Mayen L, Jensen ND, Laurencin D et al (2020) A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomater 103:333–345. https://doi.org/10.1016/j.actbio.2019.12.027

    Article  CAS  Google Scholar 

  21. Ortali C, Julien I, Vandenhende M et al (2018) Consolidation of bone-like apatite bioceramics by spark plasma sintering of amorphous carbonated calcium phosphate at very low temperature. J Eur Ceram Soc 38:2098–2109. https://doi.org/10.1016/j.jeurceramsoc.2017.11.051

    Article  CAS  Google Scholar 

  22. Uskoković V, Marković S, Veselinović L et al (2018) Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Phys Chem Chem Phys 20:29221–29235. https://doi.org/10.1039/c8cp06460a

    Article  CAS  Google Scholar 

  23. Eanes ED, Posner AS (1965) Division of biophysics: kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite. Trans N Y Acad Sci 28:233–241. https://doi.org/10.1111/j.2164-0947.1965.tb02877.x

    Article  CAS  Google Scholar 

  24. Chow LC, Sun L, Hockey B (2004) Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol 109:543–551. https://doi.org/10.6028/jres.109.041

    Article  CAS  Google Scholar 

  25. Xu HHK, Moreau JL, Sun L, Chow LC (2011) Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 27:762–769. https://doi.org/10.1016/j.dental.2011.03.016

    Article  CAS  Google Scholar 

  26. Melo MAS, Weir MD, Passos VF et al (2017) Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization. Artif Cells Nanomedicine Biotechnol 45:1778–1785. https://doi.org/10.1080/21691401.2017.1290644

    Article  CAS  Google Scholar 

  27. Sun L, Chow LC, Frukhtbeyn SA, Bonevich JE (2010) Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J Res Natl Inst Stand Technol 115:243–255. https://doi.org/10.6028/jres.115.018

    Article  CAS  Google Scholar 

  28. Safronova TV, Mukhin EA, Putlyaev VI et al (2017) Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application. Ceram Int 43:1310–1317. https://doi.org/10.1016/j.ceramint.2016.10.085

    Article  CAS  Google Scholar 

  29. Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37:6932–6937. https://doi.org/10.1021/ma049623d

    Article  CAS  Google Scholar 

  30. Zernike F, Prins JA (1927) Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. Zeitschrift für Phys 41:184–194. https://doi.org/10.1007/BF01391926

    Article  Google Scholar 

  31. Dassenoy F, Philippot K, Ould Ely T et al (1998) Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. New J Chem 22:703–711. https://doi.org/10.1039/a709245h

    Article  CAS  Google Scholar 

  32. Von Euw S, Ajili W, Chan-Chang THC et al (2017) Amorphous surface layer versus transient amorphous precursor phase in bone–a case study investigated by solid-state NMR spectroscopy. Acta Biomater 59:351–360. https://doi.org/10.1016/j.actbio.2017.06.040

    Article  CAS  Google Scholar 

  33. Kim S, Ryu HS, Shin H et al (2005) In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions. Mater Chem Phys 91:500–506. https://doi.org/10.1016/j.matchemphys.2004.12.016

    Article  CAS  Google Scholar 

  34. Brečević L, Füredi-Milhofer H (1972) Precipitation of calcium phosphates from electrolyte solutions. Calcif Tissue Res 10:82–90. https://doi.org/10.1007/BF02012538

    Article  Google Scholar 

  35. Saury C, Boistelle R, Dalemat F, Bruggeman J (1993) Solubilities of calcium acetates in the temperature range 0–100 °C. J Chem Eng Data 38:56–59. https://doi.org/10.1021/je00009a013

    Article  CAS  Google Scholar 

  36. Judd MD, Plunkett BA, Pope MI (1974) The thermal decomposition of calcium, sodium, silver and copper(II) acetates. J Therm Anal 6:555–563. https://doi.org/10.1007/BF01911560

    Article  CAS  Google Scholar 

  37. Famery R, Richard N, Boch P (1994) Preparation of α- and β-tricalcium phosphate ceramics, with and without magnesium addition. Ceram Int 20:327–336. https://doi.org/10.1016/0272-8842(94)90050-7

    Article  CAS  Google Scholar 

  38. Durucan C, Brown PW (2002) Reactivity of α-tricalcium phosphate. J Mater Sci 37:963–969. https://doi.org/10.1023/A:1014347814241

    Article  CAS  Google Scholar 

  39. Somrani S, Rey C, Jemal M (2003) Thermal evolution of amorphous tricalcium phosphate. J Mater Chem 13(4):888–892. https://doi.org/10.1039/b210900j

    Article  CAS  Google Scholar 

  40. Gras P, Teychené S, Rey C et al (2013) Crystallisation of a highly metastable hydrated calcium pyrophosphate phase. Cryst Eng Comm 15:2294–2300. https://doi.org/10.1039/c2ce26499d

    Article  CAS  Google Scholar 

  41. Tseng YH, Zhan J, Lin KSK et al (2004) High resolution 31P NMR study of octacalcium phosphate. Solid State Nucl Magn Reson 26:99–104. https://doi.org/10.1016/j.ssnmr.2004.06.002

    Article  CAS  Google Scholar 

  42. Sen D, Spalla O, Taché O et al (2007) Slow drying of a spray of nanoparticles dispersion. In situ SAXS investigation. Langmuir 23:4296–4302. https://doi.org/10.1021/la063245j

    Article  CAS  Google Scholar 

  43. Stutman JM, Termine JD, Posner AS (1965) Vibrational spectra and structure of the phosphate ion in some calcium phosphates. Trans N Y Acad Sci 27:669–675. https://doi.org/10.1111/j.2164-0947.1965.tb02224.x

    Article  CAS  Google Scholar 

  44. Mathew M, Brown WE, Schroeder LW, Dickens B (1988) Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HP04)2(PO4)4·5H2O. J Crystallogr Spectrosc Res 18:235–250. https://doi.org/10.1007/BF01194315

    Article  CAS  Google Scholar 

  45. Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 23:2593–2606. https://doi.org/10.1007/s10856-012-4719-y

    Article  CAS  Google Scholar 

  46. Von Euw S, Wang Y, Laurent G et al (2019) Bone mineral: new insights into its chemical composition. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-44620-6

    Article  CAS  Google Scholar 

  47. Duer M, Veis A (2013) Water brings order. Nat Mater 12:1081–1082. https://doi.org/10.1038/nmat3822

    Article  CAS  Google Scholar 

  48. Wang X, Ye J, Wang Y et al (2007) Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res Part A 81:781–790. https://doi.org/10.1002/jbm.a.31059

    Article  CAS  Google Scholar 

  49. Tsukeoka T, Suzuki M, Ohtsuki C et al (2006) Mechanical and histological evaluation of a PMMA-based bone cement modified with γ-methacryloxypropyltrimethoxysilane and calcium acetate. Biomaterials 27:3897–3903. https://doi.org/10.1016/j.biomaterials.2006.03.002

    Article  CAS  Google Scholar 

  50. Lewandrowski KU, Gresser JD, Wise DL, Trantolo DJ (2000) Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials 21:757–764. https://doi.org/10.1016/S0142-9612(99)00179-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Marianne Clerc-Imperor for helpful discussions about SAXS results, Gwénaëlle Guittier (LGC) for N2 adsorption measurements and Cédric Charvillat (CIRIMAT) for XRD and TGA-TDA measurements. They also want to thank Alessandro Pugliara and Teresa Hungria (Centre de MicroCaractérisation Raimond Castaing UMS 3623) and Stéphanie Balor (METi) for the TEM analyses. The FERMaT Federation FR3089, Université de Toulouse, CNRS, is acknowledged too for providing small-angle X-ray scattering laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Brouillet.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Grill, S., Soulie, J., Coppel, Y. et al. Spray-drying-derived amorphous calcium phosphate: a multi-scale characterization. J Mater Sci 56, 1189–1202 (2021). https://doi.org/10.1007/s10853-020-05396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05396-7

Navigation