Skip to main content

Advertisement

Log in

Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible, self-healing hydrogels with a variety of desirable properties are required for artificial skin applications. Here, we report a novel ionic conductive composite hydrogel consisting of polyacrylamide (PAM), a silk sericin (SS) network and NaCl for use on bionic skin. The use of NaCl made the hydrogels good ionic conductors. Intrinsic interactions between the PAM and SS endowed the hydrogel with good mechanical properties, including a high tensile strength of 0.36 MPa and a compressive strength of 0.38 MPa. The ionic hydrogel showed a high transparency of 93%, a high adhesion strength of 52 kPa, and good conductivity. After being fractured, two pieces of the ionic hydrogel were re-bonded without external stimulation, which simulated the self-healing properties of skin after injury. The hydrogel displayed moisturizing and anti-mildew properties after being stored at room temperature for 2 months. These ionic hydrogels may find applications in artificial skin, human–machine interfaces and soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Xia S, Song S, Jia F, Gao G (2019) A flexible adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 7:4638–4648

    CAS  Google Scholar 

  2. Trung TQ, Ramasundaram S, Hwang BU, Lee NE (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509

    CAS  Google Scholar 

  3. Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C (2018) A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv Mater 30:e1706738

    Google Scholar 

  4. Kumar R, Aadil KR, Ranjan S, Kumar VB (2020) Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Tech 57:101617

    CAS  Google Scholar 

  5. Zeng X, Wang Z, Zhang H, Yang W, Hu Y (2019) Tunable, ultrasensitive, and flexible pressure sensors based on wrinkled microstructures for electronic skins. ACS Appl Mater Interfaces 11:21218–21226

    CAS  Google Scholar 

  6. Lee Y, Park J, Choe A, Cho S, Ko H (2019) mimicking human and biological skins for multifunctional skin electronics. Adv Funct Mater 30:1904523

    Google Scholar 

  7. Zhang S, Li S, Xia Z, Cai K (2020) A review of electronic skin: soft electronics and sensors to human health. J Mater Chem B 8:852–862

    CAS  Google Scholar 

  8. Wang S, Xu J, Wang W, Wang GN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T, Kwon SK, Kim Y, Foudeh AM, Ehrlich A, Gasperini A, Yun Y, Murmann B, Tok JB, Bao Z (2018) Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555:83–88

    CAS  Google Scholar 

  9. Kumar R, Kumar VB, Gedanken A (2020) Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason Sonochem 64:105009

    CAS  Google Scholar 

  10. Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, Shi M, Bian Z, Liu Z, Kim YS, Yeo WH, Park JS, Song J, Li Y, Huang Y, Gorbach AM, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944

    CAS  Google Scholar 

  11. Kumar VB, Kumar R, Gedanken A, Shefi O (2019) Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrason Sonochem 52:205–213

    CAS  Google Scholar 

  12. Hu Y, Zhao T, Zhu P, Zhang Y, Liang X, Sun R, Wong CP (2018) A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Research 11:1938–1955

    Google Scholar 

  13. Larmagnac A, Eggenberger S, Janossy H, Voros J (2014) Stretchable electronics based on Ag-PDMS composites. Sci Rep 4:7254

    CAS  Google Scholar 

  14. Wang RF, Xu W, Shen WF, Shi XQ, Huang J, Song WJ (2019) A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorg Chem Front 6:3119–3124

    CAS  Google Scholar 

  15. Chung Y, Kim HH, Lee S, Lee E, Won Kim S, Ryu S, Cho K (2015) Ubiquitous graphene electronics on scotch tape. Sci Rep 5:12575

    CAS  Google Scholar 

  16. Yang Z, Wang DY, Pang Y, Li YX, Wang Q, Zhang TY, Wang JB, Liu X, Yang YY, Jian JM, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor. ACS Appl Mater Interfaces 10:3948–3954

    CAS  Google Scholar 

  17. Choi SJ, Kim SJ, Kim ID (2016) Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater 8:e315

    CAS  Google Scholar 

  18. Scidà A, Haque S, Treossi E, Robinson A, Smerzi S, Ravesi S, Borini S, Palermo V (2018) Application of graphene-based flexible antennas in consumer electronic devices. Mater Today 21:223–230

    Google Scholar 

  19. Yang H, Qi D, Liu Z, Chandran B, Wang T, Yu J, Chen X (2016) Soft thermal sensor with mechanical adaptability. Adv Mater 28:9175–9181

    CAS  Google Scholar 

  20. Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee ST, Kim JH, Choi SH, Hyeon T, Kim DH (2014) Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5:5747

    CAS  Google Scholar 

  21. Hong SY, Lee YH, Park H, Jin SW, Jeong YR, Yun J, You I, Zi G, Ha JS (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28:930–935

    CAS  Google Scholar 

  22. Wang Z, Zhou H, Chen W, Li Q, Yan B, Jin X, Ma A, Liu H, Zhao W (2016) Dually synergetic network hydrogels with integrated mechanical stretchability, thermal responsiveness, and electrical conductivity for strain sensors and temperature alertors. ACS Appl Mater Interfaces 10:14045–14054

    Google Scholar 

  23. Gerratt AP, Michaud HO, Lacour SP (2015) Elastomeric electronic skin for prosthetic tactile sensation. Adv Funct Mater 25:2287–2295

    CAS  Google Scholar 

  24. Ryplida B, Lee KD, In I, Park SY, Sung YP (2019) Light-Induced Swelling-responsive conductive, adhesive, and stretchable wireless film hydrogel as electronic artificial skin. Adv Funct Mater 29:1903209

    Google Scholar 

  25. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583

    CAS  Google Scholar 

  26. Hou W, Sheng N, Zhang X, Luan Z, Qi P, Lin M, Tan Y, Xia Y, Li Y, Sui K (2019) Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydr Polym 211:322–328

    CAS  Google Scholar 

  27. Ra Li, Zhang K, Cai L, Chen G, He M (2019) Highly stretchable ionic conducting hydrogels for strain/tactile sensors. Polym 167:154–158

    Google Scholar 

  28. Algi MP, Okay O (2014) Highly stretchable self-healing poly(N, N-dimethylacrylamide) hydrogels. Eur Polym J 59:113–121

    CAS  Google Scholar 

  29. Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y (2019) Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 29:1806220

    Google Scholar 

  30. Wu J, Wu Z, Lu X, Han S, Yang BR, Gui X, Tao K, Miao J, Liu C (2019) Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl Mater Interfaces 11:9405–9414

    CAS  Google Scholar 

  31. Zhang X, Sheng N, Wang L, Tan Y, Liu C, Xia Y, Nie Z, Sui K (2019) Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater Horizons 6:326–333

    CAS  Google Scholar 

  32. Kundu S, Crosby AJ (2017) Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5:3963–3968

    Google Scholar 

  33. He H, Cai R, Wang Y, Tao G, Guo P, Zuo H, Chen L, Liu X, Zhao P, Xia Q (2017) Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. Int J Biol Macromol 104:457–464

    CAS  Google Scholar 

  34. Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467

    CAS  Google Scholar 

  35. Mandal BB, Priya AS, Kundu SC (2009) Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications. Acta Biomater 5:3007–3020

    CAS  Google Scholar 

  36. Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L (2018) Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr Polym 8:377–383

    Google Scholar 

  37. Deng Y, Huang M, Sun D, Hou Y, Li Y, Dong T, Wang X, Zhang L, Yang W (2018) Dual physically cross-linked kappa-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application. ACS Appl Mater Interfaces 10:37544–37554

    CAS  Google Scholar 

  38. Luo K, Yang Y, Shao Z (2016) Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater 26:872–880

    CAS  Google Scholar 

  39. Wang Z, Chen J, Wang L, Gao G, Zhou Y, Wang R, Xu T, Yin J, Fu J (2019) Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. J Mater Chem B 7:24–29

    CAS  Google Scholar 

  40. Carvalho E, Verma P, Hourigan K, Banerjee R (2014) Development of dual triggered in situ gelling scaffolds for tissue engineering. Polym Int 63:1593–1599

    CAS  Google Scholar 

  41. Yuan K, Wang H, Liu J, Fang X, Zhang Z (2015) Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance. Sol Energy Mater Sol Cells 143:29–37

    CAS  Google Scholar 

  42. Wu J, Wu Z, Xu H, Wu Q, Liu C, Yang B, Gui X, Xie X, Tao K, Shen Y (2019) An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater Horizons 6:595–603

    CAS  Google Scholar 

  43. Mandal BB, Ghosh B, Kundu SC (2011) Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications. Int J Biol Macromol 49:125–133

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51773120 & 51802201), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110433), the Shenzhen Science and Technology Planning Project (Grant Nos. JCYJ20170412105034748, JCYJ20190808123207674, and JCYJ20190808115609663), the Graduate Innovation and Development Foundation of Shenzhen University (Grant No. PIDFP-ZR2018030), and funding program of Foshan supporting policies for promoting the service industry of scientific achievements in universities (Grant No. 2019XCC09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Wang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xie, J., Liu, J. et al. Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin. J Mater Sci 56, 2725–2737 (2021). https://doi.org/10.1007/s10853-020-05382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05382-z

Navigation