Skip to main content

Advertisement

Log in

Controllable synthesis of MOF-derived FexNi1−x@C composites with dielectric–magnetic synergy toward optimized impedance matching and outstanding microwave absorption

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The impedance matching is a very important part to influence materials’ microwave absorption performance. However, a way to further discuss the impedance matching is still weak. We build a novel dielectric–magnetic impedance matching (DMIM) model to analyze the real part and imaginary part of materials’ impedance matching. To verify the practicality of the DMIM model, using MIL-100(Fe) as precursor, a series of FexNi1−x@C are synthesized via one-step pyrolysis by controlling the samples’ Fe–Ni ratio, changing their dielectric loss tangent and magnetic loss tangent and successfully regulating their impedance matching to optimize microwave absorption properties. In addition, the minimum reflection loss for MOF-derived Fe0.8Ni0.2@C can arrive at -71.3 dB at 10.3 GHz with a thickness of 3.1 mm, and the effective absorption bandwidth is 5.3 GHz. And combining with the RLGC equivalent circuit model to further indicate the FexNi1−x@C’s energy loss mechanism. The method of using DMIM model and RLGC model to discuss materials’ impedance matching and energy loss mechanism paves a new way to fabricate high-performance microwave materials with balanced electromagnetic distribution and further reveal the materials' microwave absorbing mechanism.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chen Y, Seow J, Zhao Q, Xu Z, Ji G (2020) A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett 12:125

    Google Scholar 

  2. Zhang L, Yu S, Lu X, Fan W, Chi B, Ye Y, Shi X, Zeng J, Li X, Liao X (2020) Two-dimensional bimetallic Zn/Fe-metal-organic framework (MOF)-derived porous carbon nanosheets with a high density of single/paired Fe atoms as high-performance oxygen reduction catalysts. ACS Appl Mater Interfaces 12:13878–13887

    Google Scholar 

  3. Wang S, Xu Y, Fu R, Zhu H, Jiao Q, Feng T, Feng C, Shi D, Li H, Zhao Y (2019) Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett 11:331–346

    Google Scholar 

  4. Liang X, Quan B, Man Z, Cao B, Li N, Wang C, Ji G, Yu T (2019) Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl Mater Interfaces 11:30228–30233

    CAS  Google Scholar 

  5. Wang X, Pan F, Xiang Z, Zeng Q, Pei K, Che R, Lu W (2020) Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157:130–139

    CAS  Google Scholar 

  6. Pan K, Leng T, Song J, Ji C, Zhang J, Li J, Novoselov K, Hu Z (2020) Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption. Carbon 160:307–316

    CAS  Google Scholar 

  7. Liang X, Zhang X, Liu W, Tang D, Zhang B, Ji G (2016) A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J Mater Chem C 4:6816–6821

    CAS  Google Scholar 

  8. Luo J, Zhang K, Cheng M, Gu M, Sun X (2020) MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem Eng J 380:122625

    CAS  Google Scholar 

  9. Lu M, Cao W, Shi H, Fang X, Yang J, Hou Z, Jin H, Wang W, Yuan J, Cao M (2014) Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A 2:10540–10547

    CAS  Google Scholar 

  10. Li X, Yu L, Zhao W, Shi Y, Yu L, Dong Y, Zhu Y, Fu Y, Liu X, Fu F (2020) Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem Eng J 379:122393

    CAS  Google Scholar 

  11. Zhang Y, Yanga Z, Lia M, Yanga L, Liua J, Hab Y, Wu R (2020) Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem Eng J 382:123039

    CAS  Google Scholar 

  12. Liu P, Gao S, Wang Y, Huang Y, Wang Y, Luo J (2019) Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl Mater Interfaces 11:25624–25635

    CAS  Google Scholar 

  13. Golchinvafa S, Masoudpanah S, Jazirehpour M (2019) Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders. J Alloys Compd 809:151746

    CAS  Google Scholar 

  14. Shu R, Zhang J, Guo C, Wu Y, Wan Z, Shi J, Liu Y, Zheng M (2020) Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem Eng J 384:123266

    CAS  Google Scholar 

  15. Chen X, Wang W, Shi T, Wu G, Lu Y (2020) One pot green synthesis and EM wave absorption performance of MoS2@ nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 163:202–212

    CAS  Google Scholar 

  16. Kim Y, Hwang J, Khuyen B, Tung B, Kim K, Rhee J, Chen L, Lee Y (2018) Flexible ultrathin metamaterial absorber for wide frequency band, based on 7 conductive fibers. Sci Technol Adv Mater 19:711–717

    CAS  Google Scholar 

  17. Gupta S, Chang C, Anbalagan A, Lee C, Tai N (2020) Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption. Compos Sci Technol 188:107994

    CAS  Google Scholar 

  18. Zhou C, Wang X, Luo H, Deng L, Wei S, Zheng Y, Jia Q, Liu J (2020) Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem Eng J 383:123095

    CAS  Google Scholar 

  19. He J, Liu S, Deng L, Shan D, Cao C, Luo H, Yan S (2020) Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl Surf Sci 504:144210

    CAS  Google Scholar 

  20. Huang M, Wang L, Pei K, You W, Yu X, Wu Z, Che R (2020) Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16:2000158

    CAS  Google Scholar 

  21. Zhu T, Sun Y, Wang Y, Xing H, Li X, Hu P, Zong Y, Zheng X (2020) A MOF-driven porous iron with high dielectric loss and excellent microwave absorption properties. J Mater Sci-Mater El 31:6843–6854

    CAS  Google Scholar 

  22. Liu Y, Zhu Z, Liu X, Lu Q, Yin X, Guo L, Yang Y (2019) Electromagnetic modeling and analysis of the tapered differential through glass vias. Microelectron J 83:27–31

    Google Scholar 

  23. Hasirci Z, Cavdar I (2018) S-parameters-based causal RLGC(f) model of busbar distribution systems for broadband power line communication. Int J Elec Power 95:561–567

    Google Scholar 

  24. Guesh K, Caiuby C, Mayoral Á, Díaz-García M, Díaz I (2017) Sustainable preparation of MIL-100 (Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst Growth Des 17:1806–1813

    CAS  Google Scholar 

  25. Yang Y, Xia L, Zhang T, Shi B, Huang L, Zhong B, Zhang X, Wang H, Zhang J, Wen G (2018) Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem Eng J 352:510–518

    CAS  Google Scholar 

  26. Kuang B, Song W, Ning M, Li J, Zhao Z, Guo D, Cao M, Jin H (2018) Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127:209–217

    CAS  Google Scholar 

  27. Moruzzi V, Marcus P (1986) Ferromagnetic phases of bcc and fcc Fe Co, and Ni. Phys Rev B 34:1784–1791

    CAS  Google Scholar 

  28. Zhao H, Cheng Y, Liu W, Yang L, Zhang B, Wang L, Ji G, Xu Z (2019) Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett 11:24

    CAS  Google Scholar 

  29. Jiang Y, Fu X, Tian R, Zhang W, Du H, Fu C, Zhang Z, Xie P, Xin J, Fan R (2020) Nitrogen-doped carbon nanofibers with sulfur heteroatoms for improving microwave absorption. J Mater Sci 55:5832–5842. https://doi.org/10.1007/s10853-020-04430-y

    Article  CAS  Google Scholar 

  30. Hou T, Wang B, Ma M et al (2020) Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos Part B-Eng 180:107577

    CAS  Google Scholar 

  31. Liang X, Man Z, Quan B, Zheng J, Gu W, Zhang Z, Ji G (2020) Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett 12:102

    CAS  Google Scholar 

  32. Zhao H, Chen Y, Zhang Z, Yu J, Zheng J, Zhou M, Zhou L, Zhao B, Ji G (2020) Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos Part B 19:108119

    Google Scholar 

  33. Hu C, Liu H, Zhang Y, Zhang M, Yu J, Liu X, Zhang X (2019) Tuning microwave absorption properties of multiwalled carbon nanotubes by surface functional groups. J Mater Sci 54:2417–2426. https://doi.org/10.1007/s10853-018-2895-y

    Article  CAS  Google Scholar 

  34. Liu W, Liu L, Ji G, Li D, Zhang Y, Ma J, Du Y (2017) Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustainable Chem Eng 5:7961–7971

    CAS  Google Scholar 

  35. Xiang Z, Song Y, Xiong J, Pan Z, Wang X, Liu L, Liu R, Yang H, Lu W (2019) Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142:20–31

    CAS  Google Scholar 

  36. Liu Q, Liu X, Feng H, Shui H, Yu R (2017) Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem Eng J 314:320–327

    CAS  Google Scholar 

  37. Rehman S, Liu J, Fang Z, Wang J, Ahmed R, Wang C, Bi H (2019) Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl Nano Mater 2:4451–4461

    Google Scholar 

  38. Wang L, Yu X, Li X, Zhang J, Wang M, Che R (2020) MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem Eng J 383:123099

    CAS  Google Scholar 

  39. Liang B, Wang S, Kuang D, Hou L, Yu B, Lin L (2018) Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles. Nanotechnology 29:085604

    Google Scholar 

  40. Das A, Negi P, Joshi S, Kumar A (2019) Enhanced microwave absorption properties of Co and Ni co-doped iron (II, III)/reduced graphene oxide composites at X-band frequency. J Mater Sci-Mater El 30:19325–19334

    CAS  Google Scholar 

  41. Lia Y, Zhao B, Fan S, Liang L, Zhou Y, Wang R, Guo X, Fan B, Zhang R (2019) ZnO amounts-dependent electromagnetic wave absorption capabilities of Ni/ZnO composite microspheres. J Mater Sci-Mater El 30:19966–19976

    Google Scholar 

  42. Majeed A, Khan M, Yousuf L, Ahmad R, Ahmad I (2020) Structural, microwave permittivity, and complex impedance studies of cation (Cr, Bi, Al, In) substituted SrNi-X hexagonal nano-sized ferrites. Ceram Int 46:1907–1915

    CAS  Google Scholar 

  43. Kadira L, Sayouri S, Elmesbahi A, Salhi A (2019) Investigation of complex impedance and modulus properties of La or/and Ca doped BaTiO3. Mater Today: Proc 13:1238–1247

    CAS  Google Scholar 

  44. Benyoussef M, Zannen M, Belhadi J, Manoun B, Dellis J, Lahmar A, Marssi M (2020) Complex impedance and Raman spectroscopy of Na0.5(Bi1−xDyx)0.5TiO3 ceramics. Ceram Int 46:10979–10991

    CAS  Google Scholar 

  45. Tomzawa M, Cordaro J, Singh M (1979) Low frequency dielectric relaxation from complex impedance and complex electric ‘modulus’. J Mater Sci 14:1945–1951. https://doi.org/10.1007/BF00551036

    Article  Google Scholar 

  46. Wang L, Zhang J, Wang M, Che R (2019) Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. J Mater Chem C 7:11167–11176

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51572218), Scientific Research Program Funded by Shaanxi Provincial Education Department (18JK0786), Key Project of Research and Development of Shaanxi Province (2018ZDCXL-GY-08-05) and Scientific Research Program Funded by Shaanxi Provincial Education Department (203010036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Zheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Sun, Y., Wang, Y. et al. Controllable synthesis of MOF-derived FexNi1−x@C composites with dielectric–magnetic synergy toward optimized impedance matching and outstanding microwave absorption. J Mater Sci 56, 592–606 (2021). https://doi.org/10.1007/s10853-020-05307-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05307-w

Navigation