Skip to main content
Log in

Novel visible-light irradiation niobium-doped BiOBr microspheres with enhanced photocatalytic performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of niobium-doped BiOBr (Nb-BiOBr) were successfully synthesized via hydrothermal method. Moreover, the morphology structure and optical property of BiOBr and Nb-BiOBr samples were determined using various characterization techniques including SEM, TEM, EDS, BET, XRD, XPS and DRS, etc. The photocatalytic performance of Nb-BiOBr was deeply investigated with the rhodamine B and ofloxacin degradation under visible-light irradiation as model reaction. The results showed that Nb-BiOBr samples depicted the outstanding photocatalytic performance, especially for the 1.25Nb-BiOBr. Moreover, its reaction kinetic constant was ca. 6.4 times higher than that of undoped BiOBr. The observed photocatalytic performance could be attributed to the strong light absorption, enhanced separation efficiency of charge carriers as well as high specific surface area. Meanwhile, 1.25Nb-BiOBr demonstrated stability in RhB degradation, thereby facilitating the water treatment application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhong X, Dai Z, Qin F, Li J, Yang H, Lu Z, Liang Y, Chen R (2015) Ag-decorated Bi2O3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment. RSC Adv 5:69312–69318. https://doi.org/10.1039/c5ra12779c

    Article  CAS  Google Scholar 

  2. Xue J, Li X, Ma S, Xu P, Wang M, Ye Z (2018) Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation. J Mater Sci 54:1275–1290. https://doi.org/10.1007/s10853-018-2880-5

    Article  CAS  Google Scholar 

  3. Li J, Zhou Q, Yang F, Wu L, Li W, Ren R, Lv Y (2019) Uniform flower-like BiOBr/BiOI prepared by a new method: visible-light photocatalytic degradation, influencing factors and degradation mechanism. New J Chem 43:14829–14840. https://doi.org/10.1039/c9nj03038g

    Article  CAS  Google Scholar 

  4. Zhao R, Sun X, Jin Y, Han J, Wang L, Liu F (2019) Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J Mater Sci 54:5445–5456. https://doi.org/10.1007/s10853-018-03278-7

    Article  CAS  Google Scholar 

  5. Khan A, Zia UR R, Rehman M-u, Khan R, Fiqar Z, Waseem A, Iqbal A, Shah ZH (2016) CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorg Chem Commun 72:33–41. https://doi.org/10.1016/j.inoche.2016.08.001

    Article  CAS  Google Scholar 

  6. Hou L, Lian L, Zhang L, Zhou L, Yuan C (2014) Interfacial hydrothermal synthesis of nanorod-like CdMo1-xWxO4 solid solutions with enhanced photocatalytic performance. Mater Chem Phys 148:1139–1145. https://doi.org/10.1016/j.matchemphys.2014.09.035

    Article  CAS  Google Scholar 

  7. Deng P, Xiong J, Lei S, Wang W, Ou X, Xu Y, Xiao Y, Cheng B (2019) Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance. J Mater Chem A 7:22385–22397. https://doi.org/10.1039/c9ta04559g

    Article  CAS  Google Scholar 

  8. Yan Y, Tang X, Ma C, Huang H, Yu K, Liu Y, Lu Z, Li C, Zhu Z, Huo P (2020) A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity. New J Chem 44:79–86. https://doi.org/10.1039/c9nj05219d

    Article  CAS  Google Scholar 

  9. Zhang F, Zhang Y, Zhang G, Yang Z, Dionysiou DD, Zhu A (2018) Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide. Appl Catal B: Environ 236:53–100. https://doi.org/10.1016/j.apcatb.2018.05.002

    Article  CAS  Google Scholar 

  10. Gao S, Guo C, Hou S, Wan L, Wang Q, Lv J, Zhang Y, Gao J, Meng W, Xu J (2017) Photocatalytic removal of tetrabromobisphenol A by magnetically separableflower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation. J Hazard Mater 331:1–34. https://doi.org/10.1016/j.jhazmat.2017.02.030

    Article  CAS  Google Scholar 

  11. Zhang L, Wang W, Sun S, Sun Y, Gao E, Zhang Z (2014) Elimination of BPA endocrine disruptor by magnetic BiOBr@SiO2@Fe3O4 photocatalyst. Appl Catal B: Environ 148–149:164–169. https://doi.org/10.1016/j.apcatb.2013.10.053

    Article  CAS  Google Scholar 

  12. Xiong X, Ding L, Wang Q, Li Y, Jiang Q, Hu J (2016) Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed 010 facets. Appl Catal B: Environ 188:283–291. https://doi.org/10.1016/j.apcatb.2016.02.018

    Article  CAS  Google Scholar 

  13. Bi C, Cao J, Lin H, Wang Y, Chen S (2016) Tunable photocatalytic and photoelectric properties of I–doped BiOBr photocatalyst: dramatic pH effect. RSC Adv 6:15525–15558. https://doi.org/10.1039/c5ra22943j

    Article  CAS  Google Scholar 

  14. Li FT, Wang Q, Ran J, Hao Y, Wang X, Zhao D, Qiao S (2015) Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br 10 heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale 7:1116–1126. https://doi.org/10.1039/c4nr05451b

    Article  CAS  Google Scholar 

  15. Guo Y, Huang H, He Y, Tian N, Tierui Zhang, Chu P, An Q, Zhang Y (2015) In situ crystallization for fabrication of core-satellites structured BiOBr-CdS Heterostructure with an excellent visible-light-responsive photoreactivity. Nanoscale 7:11702–11713. https://doi.org/10.1039/c5nr02246k

    Article  CAS  Google Scholar 

  16. Zhu SR, Qi Q, Zhao WN, Wu M, Fang Y, Tao K, Yi F, Han L (2017) Hierarchical core-shell SiO2@PDA@BiOBr microspheres with enhanced visible-light-driven photocatalytic performance. Dalton Trans 46:11451–11460. https://doi.org/10.1039/c7dt01581j

    Article  CAS  Google Scholar 

  17. Shen G, Pu Y, Sun R, Shi Y, Cui Y, Jing P (2019) Enhanced visible light photocatalytic performance of a novel heterostructured Bi4Ti3O12/BiOBr photocatalyst. New J Chem 43:12932–12940. https://doi.org/10.1039/c9nj02723h

    Article  CAS  Google Scholar 

  18. Xu J, Mao Y-G, Liu T, Peng Y (2018) Synthesis of a novel one-dimensional BiOBr-Bi4O5Br 2 heterostructure with a high quality interface and its enhanced visible-light photocatalytic activity. CrystEng Comm 20:2292–2298. https://doi.org/10.1039/c8ce00157j

    Article  CAS  Google Scholar 

  19. Wu D, Ye L, Yue S, Wang B, Wang W, Yip H, Wong P (2016) Alkali-inducedin situ fabrication of Bi2O4-decorated BiOBr nanosheets with excellent photocatalytic performance. J Phys Chem C 120:7715–7727. https://doi.org/10.1021/acs.jpcc.6b02365

    Article  CAS  Google Scholar 

  20. Kong XY, Lee WPC, Ong W-J, Chai S-P, Mohamed AR (2016) Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. Chem Cat Chem 8:3074–3083. https://doi.org/10.1002/cctc.201600782

    Article  CAS  Google Scholar 

  21. Hou L, Niu Y, Ge F, Yuan C (2020) Construction of hierarchical square biscuit-shape BiOBr photocatalyst with enhanced visible-light-response photocatalytic activities. Mater Res Express 7:035906–035912. https://doi.org/10.1088/2053-1591/ab7f12

    Article  CAS  Google Scholar 

  22. Xia J, Yin S, Li H, Xu H, Xu L, Xu Y (2011) Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans 40:5249–5258. https://doi.org/10.1039/c0dt01511c

    Article  CAS  Google Scholar 

  23. Liang S, Zhang T, Zhang D, Pu X, Shao X, Li W, Dou J (2018) One-pot combustion synthesis and efficient broad spectrum photoactivity of Bi/BiOBr: Yb, Er/C photocatalyst. J Am Ceram Soc 101:3424–3462. https://doi.org/10.1111/jace.15520

    Article  CAS  Google Scholar 

  24. Zhao H, Liu X, Dong Y, Li H, Song R, Xia Y, Wang H (2019) A novel visible-light-driven ternary Ag@Ag2O/BiOCl Z-scheme photocatalyst with enhanced removal efficiency of RhB. New J Chem 43:13929–13937. https://doi.org/10.1039/c9nj01580a

    Article  CAS  Google Scholar 

  25. Wang R, Jiang G, Wang X, Hu R, Xi X, Bao S, Zhou Y, Tong T, Wang S, Wang T, Chen W (2012) Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Powder Technol 228:258–264. https://doi.org/10.1016/j.powtec.2012.05.028

    Article  CAS  Google Scholar 

  26. Wang C-Y, Zhang Y-J, Wang W-K, Pei D, Huang G, Chen J, Zhang X, Yu H (2018) Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl Catal B: Environ 221:320–363. https://doi.org/10.1016/j.apcatb.2017.09.036

    Article  CAS  Google Scholar 

  27. Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y (2016) Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt–BiOBr heterostructures. J Hazard Mater 308:374–385. https://doi.org/10.1016/j.jhazmat.2016.01.077

    Article  CAS  Google Scholar 

  28. He M, Li W, Xia J, Xu L, Di J, Xu H, Yin S, Li H, Li M (2015) The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid. Appl Surf Sci 331:170–178. https://doi.org/10.1016/j.apsusc.2014.12.141

    Article  CAS  Google Scholar 

  29. Song XC, Zheng YF, Yin HY, Liu JN, Ruan XD (2016) The solvothermal synthesis and enhanced photocatalytic activity of Zn2+ doped BiOBr hierarchical nanostructures. New J Chem 40:130–145. https://doi.org/10.1039/c5nj01282a

    Article  CAS  Google Scholar 

  30. Jiang G, Wang X, Wei Z, Li X, Xi X, Hu R, Tang B, Wang R, Wang S, Wang T, Chen W (2013) Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres. J Mater Chem A 1:2406–2410. https://doi.org/10.1039/c2ta00942k

    Article  CAS  Google Scholar 

  31. Yang J, Zhang X, Wang C, Sun P, Wang L, Xia B, Liu Y (2012) Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sci 14:139–144. https://doi.org/10.1016/j.solidstatesciences.2011.11.010

    Article  CAS  Google Scholar 

  32. Mu W, Xie X, Li X, Zhang R, Yu Q, Lv K, Wei H, Jian Y (2014) Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance. RSC Adv 4:36064–36070. https://doi.org/10.1039/c4ra04080e

    Article  CAS  Google Scholar 

  33. Khan S, Cho H, Kim D, Han S, Lee K, Cho S, Song T, Cho H (2017) Defect engineering toward strong photocatalysis of Nb-doped anatase TiO2: computational predictions and experimental verifications. Appl Catal B: Environ 206:520–554. https://doi.org/10.1016/j.apcatb.2017.01.039

    Article  CAS  Google Scholar 

  34. Yin S, Fan W, Di J, Wu T, Yan J, He M, Xia J, Li H (2017) La3+ doped BiOBr microsphere with enhanced visible light photocatalytic activities. Colloids Surf A: Physicochem Eng Asp 513:160–189. https://doi.org/10.1016/j.colsurfa.2016.10.012

    Article  CAS  Google Scholar 

  35. Wu D, Yue S, Wang W, An T, Li G, Yip H, Zhao H, Wong P (2016) Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli. Appl Catal B: Environ 192:35–66. https://doi.org/10.1016/j.apcatb.2016.03.046

    Article  CAS  Google Scholar 

  36. Li H, Yang Z, Zhang J, Huang Y, Ji H, Tong Y (2017) Indium doped BiOI nanosheets: preparation, characterization and photocatalytic degradation activity. Appl Surf Sci 423:1188–1213. https://doi.org/10.1016/j.apsusc.2017.06.301

    Article  CAS  Google Scholar 

  37. Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C (2016) Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water. Appl Catal B: Environ 188:39–47. https://doi.org/10.1016/j.apcatb.2016.01.054

    Article  CAS  Google Scholar 

  38. Liu Z, Wu B, Zhao Y, Niu J, Zhu Y (2014) Solvothermal synthesis and photocatalytic activity of Al-doped BiOBr microspheres. Ceram Int 40:5597–5603. https://doi.org/10.1016/j.ceramint.2013.10.152

    Article  CAS  Google Scholar 

  39. Chu K, Liu Y-p, Li Y-b, Y-l Guo Y, Tian H Zhang (2020) Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl Catal B: Environ 264:118525–118533. https://doi.org/10.1016/j.apcatb.2019.118525

    Article  CAS  Google Scholar 

  40. Huang Y, Fan W, Long B, Li H, Zhao F, Liu Z, Tong Y, Ji H (2016) Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Appl Catal B: Environ 185:68–89. https://doi.org/10.1016/j.apcatb.2015.11.043

    Article  CAS  Google Scholar 

  41. Singh M, Jampaiah D, Kandjani AE, Sabri Y, Gaspera E, Reineck P, Judd M, Langley J, Cox N, Embden J, Mayes E, Gibson B, Bhargava S, Ramanathan R, Bansal V (2018) Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity. Nanoscale 10:6039–6050. https://doi.org/10.1039/c7nr08388b

    Article  CAS  Google Scholar 

  42. Xia J, Ji M, Li W, Di J, Xu H, He M, Zhang Q, Li H (2016) Synthesis of erbium ions doped BiOBr via a reactive ionic liquid with improved photocatalytic activity. Colloids SurfA A: Physicochem Eng Asp 489:343–370. https://doi.org/10.1016/j.colsurfa.2015.10.037

    Article  CAS  Google Scholar 

  43. Lim J, Monllor-Satoca D, Jang JS, Lee S, Choi W (2014) Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl Catal B: Environ 152–153:233–240. https://doi.org/10.1016/j.apcatb.2014.01.026

    Article  CAS  Google Scholar 

  44. Cui W, Bai H, Shang J, Wang F, Xu D, Ding J, Fan W, Shi W (2020) Organic-inorganic hybrid-photoanode built from NiFe-MOF and TiO2 for efficient PEC water splitting. Electrochim Acta 349:136383–136394. https://doi.org/10.1016/j.electacta.2020.136383

    Article  CAS  Google Scholar 

  45. Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song W, Losego MD, Meyer TJ (2013) Solar water splitting in a molecular photoelectrochemical cell. Proc Natl Acad Sci 110:20008–20013. https://doi.org/10.1073/pnas.1319628110

    Article  CAS  Google Scholar 

  46. Niu X, Yan W, Zhao H, Yang J (2018) Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl Surf Sci 440:804–813. https://doi.org/10.1016/j.apsusc.2018.01.069

    Article  CAS  Google Scholar 

  47. Liu L, Hu P, Li Y, An W, Lu J, Cui W (2019) P3HT-coated Ag3PO4 core-shell structure for enhanced photocatalysis under visible light irradiation. Appl Surf Sci 466:928–954. https://doi.org/10.1016/j.apsusc.2018.10.112

    Article  CAS  Google Scholar 

  48. Ye Z, Li J, Zhou M, Wang H, Ma Y, Huo P, Yu L, Yan Y (2016) Well-dispersed nebula-like ZnO/CeO2@HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem Eng J 304:917–978. https://doi.org/10.1016/j.cej.2016.07.014

    Article  CAS  Google Scholar 

  49. Liu W, Shang Y, Zhu A, Tan P, Liu Y, Qiao L, Chu D, Xiong X, Pan J (2017) Enhanced performance of doped BiOCl nanoplates for photocatalysis: understanding from doping insight into improved spatial carrier separation. J Mater Chem A 5:12542–12549. https://doi.org/10.1039/c7ta02724a

    Article  CAS  Google Scholar 

  50. Guo C, Gao S, Lv J, Hou S, Zhang Y, Xu J (2017) Assessing the photocatalytic transformation of norfloxacin by BiOBr/iron oxides hybrid photocatalyst: kinetics, intermediates, and influencing factors. Appl Catal B: Environ 205:68–77. https://doi.org/10.1016/j.apcatb.2016.12.032

    Article  CAS  Google Scholar 

  51. Xie Z, Feng Y, Wang F, Chen D, Zhang Q, Zeng Y, Lv W, Liu G (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B: Environ 229:96–128. https://doi.org/10.1016/j.apcatb.2018.02.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (21878031); Liaoning Revitalization Talents Program (NO. XLYC1802124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Dong.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Dong, X., Zheng, N. et al. Novel visible-light irradiation niobium-doped BiOBr microspheres with enhanced photocatalytic performance. J Mater Sci 55, 16522–16532 (2020). https://doi.org/10.1007/s10853-020-05265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05265-3

Navigation