Skip to main content
Log in

Experimental isothermal sections of the ternary phase diagram Al–Cu–Si at 600 °C and 800 °C

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase diagram of the Al–Cu–Si ternary system was investigated experimentally at the temperatures 600 °C and 800 °C. The current study was designed to contribute to a better understanding of the ternary phase diagram Al–Cu–Si at elevated temperatures, where some of the phase equilibria were only tentatively known. It was found that the ternary phase τ proposed earlier is actually an extended solid solution of Al in the CuSi_δ phase. At 700 °C, the phase CuSi_δ is stable as a pseudo ternary phase, and the existence of a significantly extended thermal stability range in the ternary was also confirmed by DSC measurements. In agreement with previous isothermal sections at other temperatures, a huge solubility of aluminum in CuSi_κ and negligible solubility of Si in AlCu_β was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Pan XM, Lin C, Morral JE, Brody HD (2005) An assessment of thermodynamic data for the liquid phase in the Al-rich corner of the Al–Cu–Si system and its application to the solidification of a 319 alloy. J Phase Equilib Diffus 26:225–233

    Article  CAS  Google Scholar 

  2. Murray JL (1985) The aluminium–copper system. Int Met Rev 30:211–234

    Article  CAS  Google Scholar 

  3. Liu XJ, Ohnuma I, Kainuma R, Ishida K (1998) Phase equilibria in the Cu-rich portion of the Cu–Al binary system. J Alloys Compd 264:201–208

    Article  CAS  Google Scholar 

  4. Ponweiser N, Lengauer ChL, Richter KW (2011) Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η-Al1δCu. Intermetallics 19(11):1737–1746

    Article  CAS  Google Scholar 

  5. Liang SM, Schmid-Fetzer R (2015) Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system. CALPHAD 51:252–260

    Article  CAS  Google Scholar 

  6. Zobac O, Kroupa A, Zemanova A, Richter KW (2019) Experimental description of the Al–cu binary phase diagram. Metall Mater Trans A 50:3805–3815

    Article  CAS  Google Scholar 

  7. Havinga EE (1972) Compounds and pseudobinary alloys with the CuAl2 (C16)-type structure II. Theoretical discussion of crystallographic parameters. J Less Common Metals 27:187–193

    Article  CAS  Google Scholar 

  8. Gulay LD, Harbrecht B (2003) The crystal structure of zeta(2)-Al3Cu4-delta. Z Anorg Allg Chem 629:463–466

    Article  CAS  Google Scholar 

  9. Gulay LD, Harbrecht B (2004) The crystal structure of zeta(1)-Al3Cu4. J Alloys Compd 367:103–108

    Article  CAS  Google Scholar 

  10. Kuwano N, Doi T, Eguchi T (1977) Period of antiphase and tetragonality in the alpha2 phase of Cu–Al alloys. Trans JIM 18:807–815

    Article  CAS  Google Scholar 

  11. Murray JL, McAllister AJ (1984) The Al–Si (aluminium–silicon) system. Bull Alloy Phase Diagr 5(74–84):89–90

    Google Scholar 

  12. Chakraborti N, Lukas HL (1992) Thermodynamic optimization of the Mg–Al–Si phase diagram. CALPHAD 16(1):79–86

    Article  CAS  Google Scholar 

  13. Gröbner J, Lukas HL, Aldinger F (1996) Thermodynamic calculation of the ternary system Al–Si–C. CALPHAD 20(2):247–254

    Article  Google Scholar 

  14. Ahn HJ, Kim YS, Kim WB, Sung YE, Seong TY (2006) Formation and characterization of Cu–Si nanocomposite electrodes for rechargeable Li batteries. J Power Sources 163(1):211–214

    Article  CAS  Google Scholar 

  15. Parajuli O, Kumar N, Kipp D, Hahm JI (2007) Carbon nanotube cantilevers on self-aligned copper silicide nanobeams. Appl Phys Lett 90:173107

    Article  Google Scholar 

  16. Liu Y, Song S, Mao D, Ling H, Li M (2004) Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si. Microelectron Eng 75:309–315

    Article  CAS  Google Scholar 

  17. Olesinskym RW, Abbaschian GJ (1986) The copper–silicon system. Bull Alloy Phase Diagr 7:170–178

    Article  Google Scholar 

  18. Sufryd K, Ponweiser N, Riani P, Richter KW, Cacciamani G (2011) Experimental investigation of Cu–Si phase diagram at x(Cu) > 0.72. Intermetallics 19:1479–1488

    Article  CAS  Google Scholar 

  19. Kaufman L (1979) Coupled phase diagrams and thermochemical data for transition metal binary systems VI. CALPHAD 3(1):45–76

    Article  Google Scholar 

  20. Jacobs M (1994) COST507-thermochemical database for light metal alloys. In: Ansara I (ed) European Commission. European Commission, Brussels, p 124

    Google Scholar 

  21. Yan XY, Chang YA (2000) A thermodynamic analysis of the Cu–Si system. J Alloys Compd 308:221–229

    Article  CAS  Google Scholar 

  22. Hallstedt B, Gröbner J, Hampl M, Schmid-Fetzer R (2016) Calorimetric measurements and assessment of the binary Cu–Si and ternary Al–Cu–Si phase diagrams. CALPHAD 53:25–38

    Article  CAS  Google Scholar 

  23. Solberg JK (1978) Crystal structure of eta–Cu3Si precipitates in silica. Acta Crystalogr Sect A 34:684–698

    Article  Google Scholar 

  24. Mukherje KP, Bandyopadhyaya JP, Gupta KP (1969) Phase relationship and crystal structure of intermediate phases in Cu–Si system in composition range of 17 at pct Si to 25 at pct Si. Trans Metall Soc AIME 245:2335–2338

    Google Scholar 

  25. Morral FR, Westgren A (1934) The crystal structure of a complex copper-silicon compound. Ark Kemi Miner Geol 11B(37):1–6

    Google Scholar 

  26. Gierlotka W, Haque MA (2013) On the binary (Cu + Si) system: thermodynamic modelling of the phase diagram and atomic mobility in face centred cubic phase. J Chem Thermodyn 57:32–38

    Article  CAS  Google Scholar 

  27. Arrhenius S, Westgren A (1931) X-radiation analysis of copper–silicon alloys. Z Phys Chem 14:66–79

    CAS  Google Scholar 

  28. Veer FE, Burgers WG (1968) Diffusion in the Cu3Si phase of the copper silicon system. Trans Am Inst Min Metall Pet Eng 242:669–673

    CAS  Google Scholar 

  29. Ward WJ, Carroll KM (1982) Diffusion of copper in the copper–silicon system. J Electrochem Soc 129:227–229

    Article  CAS  Google Scholar 

  30. van Loo FJJ, Vosters PJC, Becht JGM, Metselaar R (1988) The influence of impurities on the kinetics and morphology of reaction layers in diffusion couples. Mater Sci Forum 29:261–274

    Article  Google Scholar 

  31. Olesinski RW, Abbaschian GJ (1994) Cu–Si (copper–silicon). In: Subramanian PR, Chakrabarti DJ, Laughlin DE (eds) Phase diagrams of binary copper alloys. ASM International, Materials Park, pp 398–405 (Review, Equi. Diagram, Cryst. Struct., Thermodyn., 60)

    Google Scholar 

  32. Mattern N, Seyrich R, Wilde L, Baehtz C, Knapp M, Acker J (2007) Phase formation of rapidly quenched Cu–Si alloys. J Alloys Compd 429:211–215

    Article  CAS  Google Scholar 

  33. Matsuyama K (1934) Ternary diagram of the Al–Cu–Si system. Kinzuko no Kenkyu 11:461–490

    CAS  Google Scholar 

  34. Hisatsune C (1936) The constitution diagram of the copper–silicon–aluminium system. Mem Coll Eng Kyoto Imp Univ 9:18–47

    Google Scholar 

  35. Lukas HL, Lebrun N (2005) Al–Cu–Si (aluminium–copper–silicon), Materials—The Landolt–Bornstein New Series IV/11A2, MSIT, 135–147

  36. Raghavan V (2007) Aluminum–Copper–Silicon. J Phase Equilib Diffus 28(2):180–182

    Article  CAS  Google Scholar 

  37. Riani P, Sufryd K, Cacciamani G (2009) About the Al–Cu–Si isothermal section at 500 °C and the stability of the ε–Cu15Si4 phase. Intermetallics 17:154–164

    Article  CAS  Google Scholar 

  38. He CY, Du Y, Chen HL, Xu H (2009) Experimental investigation and thermodynamic modeling of the Al–Cu–Si System. CALPHAD 33(2):200–210

    Article  CAS  Google Scholar 

  39. Ponweiser N, Richter KW (2012) New investigation of phase equilibria in the system Al–Cu–Si. J Alloys Compd 512:252–263

    Article  CAS  Google Scholar 

  40. Cao D, Liu Y, Su X, Wang J, Tu H, Huang J (2013) Diffusion mobilities in the fcc_A1 Cu–Si, Al–Si and Al–Cu–Si alloys. J Alloys Compd 551:155–163

    Article  CAS  Google Scholar 

  41. Bruker (2009) Topas software, version 4.2. Bruker, Karlsruhe

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Austrian Science Fund (FWF) under the Lise-Meitner project M2293-N34.

Author information

Authors and Affiliations

Authors

Contributions

OZ involved in investigation, resources, writing—original draft, visualization, project administration, funding acquisition. AK involved in methodology, writing—review and editing. KR involved in methodology, validation, writing—review and editing, supervision.

Corresponding author

Correspondence to Ondrej Zobac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobac, O., Kroupa, A. & Richter, K.W. Experimental isothermal sections of the ternary phase diagram Al–Cu–Si at 600 °C and 800 °C. J Mater Sci 55, 15322–15333 (2020). https://doi.org/10.1007/s10853-020-05077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05077-5

Navigation