Skip to main content
Log in

Fluoride etching of AlZSM-5 and GaZSM-5 zeolites

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The post-synthesis treatment of AlZSM-5 and GaZSM-5 zeolites by etching with buffer solution of ammonium fluoride and 0.25 M HF acid was carried out. The treatment is applied in order to obtain secondary pores in crystals and to provide easier access to the catalytically active zeolite centers. Hydrothermal synthesis of these zeolites was performed from systems containing tetrapropylammonium bromide as a template. The reaction parameters of synthesis conditions for both zeolites were optimized in order to obtain pure crystalline phases. The zeolites obtained were characterized by X-ray diffraction, IR spectroscopy, scanning electron microscopy, physical adsorption–desorption of nitrogen and solid-state NMR spectroscopy. It has been found that the result materials remain with high crystallinity while new mesoporous are created in their structure. The volume due to the presence of mesopores increases by up to 67% from the total volume, which is a drastic increase compared with the parent solids. The investigations with FTIR spectroscopy of low-temperature CO adsorption and solid-state NMR spectroscopy show that the treatment is slightly selective toward dissolution of heteroatom (aluminum or gallium). This phenomenon is observed for the first time for gallium-substituted zeolites. In order to study the influence of the metal atom in zeolite structure and the efficacy of the acid attack on the catalytic activity, the samples obtained were tested in reaction of m-xylene and toluene transformation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Argauer RJ, Landolt GR (1972) Crystalline zeolite ZSM-5 and method of preparing the same. Mobil Oil Corp, US Patent 3702886. https://patentimages.storage.googleapis.com/1f/b9/43/ff5945c7fbd9eb/US3702886.pdf

  2. International Zeolite Association. Database of Zeolite Structures—MFI. http://europe.iza-structure.org/IZA-SC/framework.php?STC=MFI

  3. Díaz I, Kokkoli E, Terasaki O, Tsapatsis M (2004) Surface structure of zeolite (MFI) crystals. Chem Mater 16:5226–5232. https://doi.org/10.1021/cm0488534

    Article  CAS  Google Scholar 

  4. Kokotailo GT, Lawton SL, Olson DH, Meier WM (1978) Structure of synthetic zeolite ZSM-5. Nature 272:437–438. https://doi.org/10.1038/272437a0

    Article  CAS  Google Scholar 

  5. Zaitan H, Manero MH, Valdés H (2016) Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination. J Environ Sci 41:59–68. https://doi.org/10.1016/j.jes.2015.05.021

    Article  CAS  Google Scholar 

  6. Zhou Q, Wang Y-Z, Tang C, Zhang Y-H (2003) Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE. Polym Degrad Stab 80:23–30. https://doi.org/10.1016/S0141-3910(02)00378-6

    Article  CAS  Google Scholar 

  7. Sato H, Ishii N, Hirose K, Nakamura S (1986) Some catalytic applications of ZSM-5 zeolite: para-selective dealkylation and vapor phase beckmann rearrangement. In: Murakami Y, Iijima A, Ward JW (eds) New developments in zeolite science and technology: studies in surface science and catalysis. Elsevier, Amsterdam, pp 755–762. https://doi.org/10.1016/S0167-2991(09)60944-7

    Chapter  Google Scholar 

  8. Wu Q, Li M, Huang Y, Fang Y (2016) Hierarchical ZSM-5 by 90° twin intergrowth of mesoporous nanofibers: synthesis and application in methanol/propanal to hydrocarbon reaction. Microporous Mesoporous Mater 226:284–291. https://doi.org/10.1016/j.micromeso.2016.02.002

    Article  CAS  Google Scholar 

  9. Jiao Y, Yang X, Jiang C, Tian C, Yang Z, Zhang J (2015) Hierarchical ZSM-5/SiC nano-whisker/SiC foam composites: preparation and application in MTP reactions. J Catal 332:70–76. https://doi.org/10.1016/j.jcat.2015.09.002

    Article  CAS  Google Scholar 

  10. Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol. Microporous Mesoporous Mater 143:435–442. https://doi.org/10.1016/j.micromeso.2011.03.029

    Article  CAS  Google Scholar 

  11. Ngoye F, Lakiss L, Qin Z, Laforge S, Canaff C, Tarighi M, Valtchev V, Thomas K, Vicente A, Gilson JP, Pouilloux Y, Fernandez C, Pinard L (2014) Mitigating coking during methylcyclohexane transformation on HZSM-5 zeolites with additional porosity. J Catal 320:118–126. https://doi.org/10.1016/j.jcat.2014.10.001

    Article  CAS  Google Scholar 

  12. van Laak ANC (2011) Post-synthesis modifications on zeolites for improved accessibility and catalytic performance. PhD Thesis, Utrecht University. https://dspace.library.uu.nl/handle/1874/203484

  13. Losch P, Boltz M, Bernardon C, Louis B, Palčić A, Valtchev V (2016) Impact of external surface passivation of nano-ZSM-5 zeolites in the methanol-to-olefins reaction. Appl Catal A 509:30–37. https://doi.org/10.1016/j.apcata.2015.09.037

    Article  CAS  Google Scholar 

  14. Yu L, Huang S, Miao S, Chen F, Zhang S, Liu Z, Xie S, Xu L (2015) A facile top-down protocol for postsynthesis modification of hierarchical aluminum-rich MFI zeolites. Chem Eur J 21:1048–1054. https://doi.org/10.1002/chem.201404817

    Article  CAS  Google Scholar 

  15. Dessau RM, Valyocsik EW, Goeke NH (1992) Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites 12:776–779. https://doi.org/10.1016/0144-2449(92)90049-U

    Article  CAS  Google Scholar 

  16. Verboekend D, Caicedo-Realpe R, Bonilla A, Santiago M, Pérez-Ramírez J (2010) Properties and functions of hierarchical ferrierite zeolites obtained by sequential post-synthesis treatments. Chem Mater 22:4679–4689. https://doi.org/10.1021/cm100886y

    Article  CAS  Google Scholar 

  17. Mekki A, Boukoussa B (2019) Structural, textural and toluene adsorption properties of microporous–mesoporous zeolite omega synthesized by different methods. J Mater Sci 54:8096–8107. https://doi.org/10.1007/s10853-019-03450-7

    Article  CAS  Google Scholar 

  18. Xiao W, Wang F, Xiao G (2015) Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. RSC Adv 5:63697–63704. https://doi.org/10.1039/C5RA07593A

    Article  CAS  Google Scholar 

  19. Shi Y, Xing E, Xie W, Zhang F, Mu X, Shu X (2015) Enhancing activity without loss of selectivity—Liquid-phase alkylation of benzene with ethylene over MCM-49 zeolites by TEAOH post-synthesis. Appl Catal A 497:135–144. https://doi.org/10.1016/j.apcata.2015.03.005

    Article  CAS  Google Scholar 

  20. Song Y, Sun C, Shen W, Lin L (2007) Hydrothermal post-synthesis of HZSM-5 zeolite to enhance the coke-resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization reaction: reconstruction of pore structure and modification of acidity. Appl Catal A 317:266–274. https://doi.org/10.1016/j.apcata.2006.10.037

    Article  CAS  Google Scholar 

  21. Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud KP, Svelle S (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A 345:43–50. https://doi.org/10.1016/j.apcata.2008.04.020

    Article  CAS  Google Scholar 

  22. Corma A, Martínez A, Arroyo PA, Monteiro JLF, Sousa-Aguiar EF (1996) Isobutane/2-butene alkylation on zeolite beta: influence of post-synthesis treatments. Appl Catal A 142:139–150. https://doi.org/10.1016/0926-860X(96)00014-2

    Article  CAS  Google Scholar 

  23. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv Funct Mater 22:916–928. https://doi.org/10.1002/adfm.201102411

    Article  CAS  Google Scholar 

  24. Müller M, Harvey G, Prins R (2000) Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous Mesoporous Mater 34:135–147. https://doi.org/10.1016/S1387-1811(99)00167-5

    Article  Google Scholar 

  25. Chen LH, Li XY, Rooke JC, Zhang YH, Yang XY, Tang Y, Xiao FS, Su BL (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem 22:17381–17403. https://doi.org/10.1039/C2JM31957H

    Article  CAS  Google Scholar 

  26. Qin Z, Gilson JP, Valtchev V (2015) Mesoporous zeolites by fluoride etching. Curr Opin Chem Eng 8:1–6. https://doi.org/10.1016/j.coche.2015.01.002

    Article  Google Scholar 

  27. Huang S, Liu X, Yu L, Miao S, Liu Z, Zhang S, Xie S, Xu L (2014) Preparation of hierarchical mordenite zeolites by sequential steaming-acid leaching-alkaline treatment. Microporous Mesoporous Mater 191:18–26. https://doi.org/10.1016/j.micromeso.2014.02.039

    Article  CAS  Google Scholar 

  28. Chen X, Todorova T, Vimont A, Ruaux V, Qin Z, Gilson JP, Valtchev V (2014) In situ and post-synthesis control of physicochemical properties of FER-type crystals. Microporous Mesoporous Mater 200:334–342. https://doi.org/10.1016/j.micromeso.2014.07.057

    Article  CAS  Google Scholar 

  29. Qin Z, Lakiss L, Gilson JP, Thomas K, Goupil JM, Fernandez C, Valtchev V (2013) Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure, acidity and catalytic activity. Chem Mater 25:2759–2766. https://doi.org/10.1021/cm400719z

    Article  CAS  Google Scholar 

  30. Feng A, Yu Y, Mi L, Cao Y, Yu Y, Song L (2019) Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous Mesoporous Mater 280:211–218. https://doi.org/10.1016/j.micromeso.2019.01.039

    Article  CAS  Google Scholar 

  31. Feng A, Yu Y, Mi L, Cao Y, Yu Y, Song L (2019) Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite. Microporous Mesoporous Mater 290:109646. https://doi.org/10.1016/j.micromeso.2019.109646

    Article  CAS  Google Scholar 

  32. Feng A, Yu Y, Mi L, Cao Y, Yu Y, Song L (2020) Development of intracrystalline mesoporosity in NH4HF2-etched NaY zeolites by surfactant-templating and its effect on toluene adsorption. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124529

    Article  Google Scholar 

  33. Babić V, Tang L, Qin Z, Hafiz L, Gilson J-P, Valtchev V (2020) Comparative study of zeolite L etching with ammonium fluoride and ammonium bifluoride solutions. Adv Mater Interfaces. https://doi.org/10.1002/admi.202000348

    Article  Google Scholar 

  34. Haw K-G, Moldovan S, Tang L, Qin Z, Fang Q, Qiu S, Valtchev V (2020) A sponge-like small pore zeolite with great accessibility to its micropores. Inorg Chem Front 7:2154–2159. https://doi.org/10.1039/D0QI00261E

    Article  CAS  Google Scholar 

  35. Todorova T, Kalvachev Yu, Lazarova H, Popova M (2016) Catalytic activity of modified mordenite in the reaction of M-xylene transformation. Compt Rend Acad Bulg Sci 69:1283–1290

    CAS  Google Scholar 

  36. Kalvachev Yu, Todorova T, Nihtianova D, Lazarova H, Popova M (2017) Fluoride etching of mordenite and its influence on catalytic activity. J Mater Sci 52:5297–5308. https://doi.org/10.1007/s10853-017-0769-3

    Article  CAS  Google Scholar 

  37. Fricke R, Kosslick H, Lischke G, Richter M (2000) Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem Rev 100:2303–2405. https://doi.org/10.1021/cr9411637

    Article  CAS  Google Scholar 

  38. Simmons DK, Szostak R, Agrawal PK, Thomas TL (1987) Gallosilicate molecular sieves: the role of framework and nonframework gallium on catalytic cracking activity. J Catal 106:287–291. https://doi.org/10.1016/0021-9517(87)90233-8

    Article  CAS  Google Scholar 

  39. Liu R, Zhu H, Wu Zh, Qin Zh, Fan W, Wang J (2015) Aromatization of propane over Ga-modified ZSM-5 catalysts. J Fuel Chem Technol 43:961–969. https://doi.org/10.1016/S1872-5813(15)30027-X

    Article  CAS  Google Scholar 

  40. Rasouli M, Yaghobi N (2018) Synthesis and characterization of platinum impregnated Zn-ZSM5 nanocatalysts for xylene isomerization reactions. Catal Lett 148:2325–2336. https://doi.org/10.1007/s10562-018-2439-8

    Article  CAS  Google Scholar 

  41. Aransiola E, Daramola M, Ojumu T (2013) Xylenes: production technologies and uses. In: Daramola M (ed) Xylenes: synthesis: characterization and physicochemical properties. Nova Sci Pub, Hauppauge, pp 1–12

    Google Scholar 

  42. Akpolat O, Gündüz G (2005) Isomerization of M-xylene. J Appl Sci 5:236–248. https://doi.org/10.3923/jas.2005.236.248

    Article  Google Scholar 

  43. Al-Khattaf S, Akhtar M, Odedairo T, Aitani A, Tukur N, Kubu M, Musilova-Pavlackova Z, Cejka J (2011) Catalytic transformation of methyl benzenes over zeolite catalysts. Appl Catal A 394:176–190. https://doi.org/10.1016/j.apcata.2010.12.031

    Article  CAS  Google Scholar 

  44. Min H, Cha S, Hong S (2012) Mechanistic insights into the zeolite-catalyzed isomerization and disproportionation of m-xylene. ACS Catal 2:971–981. https://doi.org/10.1021/cs300127w

    Article  CAS  Google Scholar 

  45. Mirth GC, Cejka J, Lercher JA (1993) Transport and isomerization of xylenes over HZSM-5 zeolites. J Catal 139:24–33. https://doi.org/10.1006/jcat.1993.1003

    Article  CAS  Google Scholar 

  46. Armaroli T, Simon LJ, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites. Appl Catal A 306:78–84. https://doi.org/10.1016/j.apcata.2006.03.030

    Article  CAS  Google Scholar 

  47. Lambert SL (1993) The synthesis and characterization of Ga-MFI and Ga-MTW zeolites. In: von Ballmoos R, Higgins JB, Treacy MMJ (eds) Proceedings from the Ninth International Zeolite Conference. Butterworth-Heinemann, pp 223–230. https://doi.org/10.1016/B978-1-4832-8383-8.50025-8

  48. Kalvachev Yu, Jaber M, Mavrodinova V, Dimitrov L, Nihtianova D, Valtchev V (2013) Seeds-induced fluoride media synthesis of nanosized zeolite Beta crystals. Microporous Mesoporous Mater 177:127–134. https://doi.org/10.1016/j.micromeso.2013.04.028

    Article  CAS  Google Scholar 

  49. Hadjiivanov K, Vayssilov G (2002) Characterization of oxides surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv Catal 47:307–511. https://doi.org/10.1016/S0360-0564(02)47008-3

    Article  CAS  Google Scholar 

  50. Chakarova K, Hadjiivanov K (2011) Problems in the IR measuring the acidity of zeolite bridging hydroxyls by low-temperature CO adsorption. Chem Commun 47:1878–1880. https://doi.org/10.1039/c0cc04484a

    Article  CAS  Google Scholar 

  51. Engelhardt G, Lohse U, Lippmaa E, Tarmak M, Mägi MZ (1981) 29Si-NMR- Untersuchungen zur Verteilung der Silicium-und Aluminiumatome im Alumosilicatgitter von Zeolithen mit Faujasit-Struktur. Anorg Allg Chem 482:49–64. https://doi.org/10.1002/zaac.19814821106

    Article  CAS  Google Scholar 

  52. Massiot D, Fayon F, Capron M, King I, Le Calve S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76. https://doi.org/10.1002/mrc.984

    Article  CAS  Google Scholar 

  53. Hunger M (2009) Solid-state NMR spectroscopy. In: Chester AW, Derouane EG (eds) Zeolite characterization and catalysis. Springer, Dordrecht, pp 65–105. https://doi.org/10.1007/978-1-4020-9678-5_2

    Chapter  Google Scholar 

  54. Brunner E, Ernst H, Freude D, Frohlich T, Hunger M, Pfeifer H (1991) Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5. J Catal 127:34–41. https://doi.org/10.1016/0021-9517(91)90206-J

    Article  CAS  Google Scholar 

  55. van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM (2000) Stepwise dealumination of zeolite βeta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J Am Chem Soc 122:12842–12847. https://doi.org/10.1021/ja002689d

    Article  CAS  Google Scholar 

  56. Bourgeat-Lami E, Massiani P, Di Renzo F, Espiau P, Fajula F, Des Courières T (1991) Study of the state of aluminium in zeolite-β. Appl Catal 72:139–152. https://doi.org/10.1016/0166-9834(91)85034-S

    Article  CAS  Google Scholar 

  57. Campbell SM, Bibby DM, Coddington JM, Howe RF, Meinhold RH (1996) Dealumination of HZSM-5 Zeolites: I. Calcination and hydrothermal treatment. J Catal 161:338–349. https://doi.org/10.1006/jcat.1996.0191

    Article  CAS  Google Scholar 

  58. Xin S, Wang Q, Xu J, Chu Y, Wang P, Feng N, Qi G, Trébosc J, Lafon O, Fanband W, Deng F (2019) The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem Sci 10:10159–10169. https://doi.org/10.1039/C9SC02634G

    Article  CAS  Google Scholar 

  59. Klik R, Bosáček V, Kubelková L, Freude D, Michel D (1997) Coordination state of gallium in MFI structures prepared by direct synthesis and by postsynthetic modification of boralites. Zeolites 19:343–348. https://doi.org/10.1016/S0144-2449(97)00089-4

    Article  CAS  Google Scholar 

  60. Bayense CR, van Hooff JHC, Kentgens APM, de Haan JW, van de Ven LJM (1989) The removal of gallium from the lattice of MFI-galosilicates as studied by 71 Ga m.a.s.-n.m.r. spectroscopy. J Chem Soc Chem Commun 17:1292–1293. https://doi.org/10.1039/C39890001292

    Article  Google Scholar 

  61. Bayense CR, Kentgens APM, de Haan JW, van de Ven LJM, van Hooff JHC (1992) Determination of gallium in H(Ga)ZSM5 zeolites by gallium-71 MAS NMR spectroscopy. J Phys Chem 96:775–782. https://doi.org/10.1021/j100181a047

    Article  CAS  Google Scholar 

  62. Pérez-Pariente J, Sastre E, Fornés V, Martens JA, Jacobs PA, Corma A (1991) Isomerization and disproportionation of m-xylene over zeolite β. Appl Catal 69:125–137. https://doi.org/10.1016/S0166-9834(00)83296-0

    Article  Google Scholar 

  63. Suarez M, Perez-Pariente J, Marquez-Alvarez C, Grande Casas M, Mayoral A, Moreno A (2019) Preparation of mesoporous Beta zeolite by fluoride treatment in liquid phase. Textural, acid and catalytic properties. Microporous Mesoporous Mater 284:296–303. https://doi.org/10.1016/j.micromeso.2019.04.049

    Article  CAS  Google Scholar 

  64. Cejka J, Vondrova A, Wichterlova B, Jerschkewitz HG, Lischke G, Schreier E (1995) The effect of extra-framework aluminum in dealuminated ZSM-5 zeolites on the transformation of aromatic hydrocarbons. Collect Czech Chem Commun 60:412–420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian National Science Fund (Contract No. KP-06-5). Equipment of INFRAMAT (Research Infrastructure from National roadmap of Bulgaria), supported by Contract D01-284/17.12.2019 with Bulgarian Ministry of Education and Science, is used in the present investigations. Margarita Popova and Hristina Lazarova thank the European Regional Development Fund within the Operational Programme Science and Education for Smart Growth 2014–2020 under the Project Center of Excellence: National center of mechatronics and clean technologies—BG05M2OP001-1.001-0008 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kalvachev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorova, T., Shestakova, P., Petrova, T. et al. Fluoride etching of AlZSM-5 and GaZSM-5 zeolites. J Mater Sci 55, 13799–13814 (2020). https://doi.org/10.1007/s10853-020-05030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05030-6

Navigation