Skip to main content

Advertisement

Log in

Enhanced interfacial electron transfer and boosted visible-light photocatalytic hydrogen evolution activity of g-C3N4 by noble-metal-free MoSe2 nanoparticles

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rationally designing noble-metal-free metallic cocatalysts modified graphitic carbon nitride (g-C3N4) as heterostructured photocatalysts is an efficient strategy for enhancing photocatalytic hydrogen (H2) evolution. Herein, uniform molybdenum diselenide (MoSe2) nanoparticles were synthesized through a simple solvothermal approach, and the MoSe2 nanoparticles anchored g-C3N4 nanosheets were subsequently prepared by a solution-phase strategy. The resulting MoSe2/g-C3N4 nanocomposite displayed good performance toward visible-light photocatalytic H2 production. The optimal amount of MoSe2 nanoparticles was 7% of composite by weight, displaying the highest H2 production rate of 287.3 μmol h−1 g−1. The excellent photocatalytic performance of the MoSe2/g-C3N4 hybrids was ascribed to the introduction of MoSe2 nanoparticles, which facilitated the charge separation and dramatically promoted the photoelectron transport. The insight into the charge transfer through the interface between MoSe2 nanoparticles and g-C3N4 nanosheets was revealed by photoluminescence spectra, electrochemical and photoelectrochemical experiments. This work provides solid evidence that MoSe2 nanoparticles can be a promising cocatalyst loaded g-C3N4 for enhanced photocatalytic performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sust Energ Rev 57:850–866

    CAS  Google Scholar 

  2. Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139:1675–1683

    CAS  Google Scholar 

  3. Qi K, Cheng B, Yu J, Ho W (2017) A review on TiO2-based Z-scheme photocatalysts. Chin J Catal 38:1936–1955

    CAS  Google Scholar 

  4. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater. 46:1807660

    Google Scholar 

  5. Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy. Environ Sci 11:1362–1391

    CAS  Google Scholar 

  6. Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J (2015) CdS/graphene nanocomposite photocatalysts. Adv Energy Mater 5:1500010

    Google Scholar 

  7. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    CAS  Google Scholar 

  8. Masih D, Ma Y, Rohani S (2017) Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl Catal B: Environ 206:556–588

    CAS  Google Scholar 

  9. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    CAS  Google Scholar 

  10. Xu X, Tian X, Sun B, Liang Z, Cui H, Tian J, Shao M (2020) 1 T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Appl Catal B: Environ 272:118984

    CAS  Google Scholar 

  11. Zhang M, Wang X (2014) Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ Sci 7:1902–1906

    CAS  Google Scholar 

  12. Ye S, Wang R, Wu M-Z, Yuan Y-P (2015) A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci 358:15–27

    CAS  Google Scholar 

  13. Mousavi M, Habibi-Yangjeh A (2018) Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts. J Mater Sci 53:9046–9063

    CAS  Google Scholar 

  14. Zhang J, Zhang M, Sun RQ, Wang X (2012) A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew Chem Int Ed 51:10145–10149

    CAS  Google Scholar 

  15. Jo W-K, Selvam NCS (2017) Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem Eng J 317:913–924

    CAS  Google Scholar 

  16. Cheng F, Yin H, Xiang Q (2017) Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Appl Surf Sci 391:432–439

    CAS  Google Scholar 

  17. Tian J, Chen Z, Jing J, Feng C, Sun M, Li W (2020) Enhanced photocatalytic performance of the MoS2/g-C3N4 heterojunction composite prepared by vacuum freeze drying method. J Photochem Photobiol A: Chem 390:112260

    CAS  Google Scholar 

  18. Xu C, Wang J, Gao B, Dou M, Chen R (2019) Synergistic adsorption and visible-light catalytic degradation of RhB from recyclable 3D mesoporous graphitic carbon nitride/reduced graphene oxide aerogels. J Mater Sci 54:8892–8906

    CAS  Google Scholar 

  19. Zhang J, Zhang G, Chen X, Lin S, Möhlmann L, Dołęga G, Lipner G, Antonietti M, Blechert S, Wang X (2012) Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew Chem Int Ed 51:3183–3187

    CAS  Google Scholar 

  20. Zhou Y, Zhang L, Huang W, Kong Q, Fan X, Wang M, Shi J (2016) N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99:111–117

    CAS  Google Scholar 

  21. Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26:805–809

    CAS  Google Scholar 

  22. Zeng D, Zhou T, Ong W-J, Wu M, Duan X, Xu W, Chen Y, Zhu Y-A, Peng D-L (2019) Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces 11:5651–5660

    CAS  Google Scholar 

  23. Cao S, Wang CJ, Fu WF, Chen Y (2017) Metal phosphides as co-catalysts for photocatalytic and photoelectrocatalytic water splitting. Chemsuschem 10:4306–4323

    CAS  Google Scholar 

  24. Tong Z, Yang D, Li Z, Nan Y, Ding F, Shen Y, Jiang Z (2017) Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11:1103–1112

    CAS  Google Scholar 

  25. Han Q, Wang B, Zhao Y, Hu C, Qu L (2015) A Graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew Chem Int Ed 54:11433–11437

    CAS  Google Scholar 

  26. Ge J, Liu Y, Jiang D, Zhang L, Du P (2019) Integrating non-precious-metal cocatalyst Ni3N with g-C3N4 for enhanced photocatalytic H2 production in water under visible-light irradiation. Chin J Catal 40:160–167

    CAS  Google Scholar 

  27. Chen L, Huang H, Zheng Y, Sun W, Zhao Y, Francis PS, Wang X (2018) Noble-metal-free Ni3N/g-C3N4 photocatalysts with enhanced hydrogen production under visible light irradiation. Dalton Trans 47:12188–12196

    CAS  Google Scholar 

  28. He K, Xie J, Yang Z, Shen R, Fang Y, Ma S, Chen X, Li X (2017) Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H2 production over g-C3N4 nanosheets under visible light. Catal Sci Technol 7:1193–1202

    CAS  Google Scholar 

  29. He K, Xie J, Liu Z-Q, Li N, Chen X, Hu J, Li X (2018) Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J Mater Chem A 6:13110–13122

    CAS  Google Scholar 

  30. Zhang J, Wu M, He B, Wang R, Wang H, Gong Y (2019) Facile synthesis of rod-like g-C3N4 by decorating Mo2C co-catalyst for enhanced visible-light photocatalytic activity. Appl Surf Sci 470:565–572

    CAS  Google Scholar 

  31. Liu J, Jia Q, Long J, Wang X, Gao Z, Gu Q (2018) Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl Catal B: Environ 222:35–43

    CAS  Google Scholar 

  32. Indra A, Acharjya A, Menezes PW, Merschjann C, Hollmann D, Schwarze M, Aktas M, Friedrich A, Lochbrunner S, Thomas A, Driess M (2017) Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system. Angew Chem Int Ed 56:1653–1657

    CAS  Google Scholar 

  33. Zeng D, Xu W, Ong W-J, Xu J, Ren H, Chen Y, Zheng H, Peng D-L (2018) Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Appl Catal B: Environ 221:47–55

    CAS  Google Scholar 

  34. Yuan Y-J, Shen Z, Wu S, Su Y, Pei L, Ji Z, Ding M, Bai W, Chen Y, Yu Z-T, Zou Z (2019) Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl Catal B: Environ 246:120–128

    CAS  Google Scholar 

  35. Dong G, Qiu P, Meng F, Wang Y, He B, Yu Y, Liu X, Li Z (2020) Facile synthesis of sulfur-doped polymeric carbon nitride/MoS2 face-to-face heterojunction for highly efficient photocatalytic interfacial charge separation. Chem Eng J 384:123330

    CAS  Google Scholar 

  36. Liang Z, Xue Y, Guo Y, Zhang G, Cui H, Tian J (2020) Rationalizing and controlling the phase transformation of semi-metallic 1T′-phase and semi-conductive 2H-phase MoS2 as cocatalysts for photocatalytic hydrogen evolution. Chem Eng J 396:125344

    CAS  Google Scholar 

  37. Zhou Y, Ye X, Lin D (2019) One-pot synthesis of non-noble metal WS2/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen production. Int J Hydrogen Energy 44:14927–14937

    CAS  Google Scholar 

  38. Jin Z, Zhang M, Wang M, Feng C, Wang Z-S (2017) Metal selenides as efficient counter electrodes for dye-sensitized solar cells. Acc Chem Res 50:895–904

    CAS  Google Scholar 

  39. Lu T, Dong S, Zhang C, Zhang L, Cui G (2017) Fabrication of transition metal selenides and their applications in energy storage. Coord Chem Rev 332:75–99

    CAS  Google Scholar 

  40. Wang F, Li Y, Shifa TA, Liu K, Wang F, Wang Z, Xu P, Wang Q, He J (2016) Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew Chem Int Ed 55:6919–6924

    CAS  Google Scholar 

  41. Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S (2017) Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater 29:1700311

    Google Scholar 

  42. Najafi L, Bellani S, Oropesa-Nuñez R, Ansaldo A, Prato M, Del Rio Castillo AE, Bonaccorso F (2018) Engineered MoSe2-based heterostructures for efficient electrochemical hydrogen evolution reaction. Adv Energy Mater 8:1703212

    Google Scholar 

  43. Zeng D, Xiao L, Ong W-J, Wu P, Zheng H, Chen Y, Peng D-L (2017) Hierarchical ZnIn2S4/MoSe2 nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light. Chemsuschem 10:4624–4631

    CAS  Google Scholar 

  44. Zeng D, Wu P, Ong W-J, Tang B, Wu M, Zheng H, Chen Y, Peng D-L (2018) Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Appl Catal B: Environ 233:26–34

    CAS  Google Scholar 

  45. Ong W-J, Putri LK, Tan Y-C, Tan L-L, Li N, Ng YH, Wen X, Chai S-P (2017) Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano Res 10:1673–1696

    CAS  Google Scholar 

  46. He F, Chen G, Zhou Y, Yu Y, Li L, Hao S, Liu B (2016) ZIF-8 derived carbon (C-ZIF) as a bifunctional electron acceptor and HER cocatalyst for g-C3N4: construction of a metal-free, all carbon-based photocatalytic system for efficient hydrogen evolution. J Mater Chem A 4:3822–3827

    CAS  Google Scholar 

  47. Tian L, Min S, Wang F (2019) Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl Catal B: Environ 259:118029

    CAS  Google Scholar 

  48. Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. PCCP 14:1455–1462

    CAS  Google Scholar 

  49. Zhou S, Liu Y, Li J, Wang Y, Jiang G, Zhao Z, Wang D, Duan A, Liu J, Wei Y (2014) Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl Catal B: Environ 158:20–29

    Google Scholar 

  50. Xie D, Tang W, Wang Y, Xia X, Zhong Y, Zhou D, Wang D, Wang X, Tu J (2016) Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res 9:1618–1629

    CAS  Google Scholar 

  51. Wang X, Ma W, Xu Z, Wang H, Fan W, Zong X, Li C (2018) Metal phosphide catalysts anchored on metal-caged graphitic carbon towards efficient and durable hydrogen evolution electrocatalysis. Nano Energy 48:500–509

    CAS  Google Scholar 

  52. Zeng D, Lu Z, Gao X, Wu B, Ong WJ (2019) Hierarchical flower-like ZnIn2S4 anchored with well-dispersed Ni12P5 nanoparticles for high-quantum-yield photocatalytic H2 evolution under visible light. Catal Sci Technol 9:4010–4016

    CAS  Google Scholar 

  53. Shen R, Liu W, Ren D, Xie J, Li X (2019) Co1.4Ni0.6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet Schottky heterojunctions for active and durable photocatalytic H2 production. Appl Surf Sci 466:393–400

    CAS  Google Scholar 

  54. Hu S, Li F, Fan Z, Wang F, Zhao Y, Lv Z (2015) Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans 44:1084–1092

    CAS  Google Scholar 

  55. Zhao S, Zhang Y, Zhou Y, Fang J, Wang Y, Zhang C, Chen W (2018) Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. J Mater Sci 53:6008–6020

    CAS  Google Scholar 

  56. Feng C, Chen Z, Hou J, Li J, Li X, Xu L, Sun M, Zeng R (2018) Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem Eng J 345:404–413

    CAS  Google Scholar 

  57. Liang Z, Bai X, Hao P, Guo Y, Xue Y, Tian J, Cui H (2019) Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes. Appl Catal B: Environ 243:711–720

    CAS  Google Scholar 

  58. Sun B, Liang Z, Qian Y, Xu X, Han Y, Tian J (2020) Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl Mater Interfaces 12:7257–7269

    CAS  Google Scholar 

  59. Fu Y, Li Z, Liu Q, Yang X, Tang H (2017) Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity. Chin J Catal 38:2160–2170

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Startup Foundation of Guangxi University, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, and the Project of Improving the Basic Ability of Young Teachers in Guangxi Colleges and Universities (No. 2019KY0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deqian Zeng or Wee-Jun Ong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Zeng, D., Zheng, H. et al. Enhanced interfacial electron transfer and boosted visible-light photocatalytic hydrogen evolution activity of g-C3N4 by noble-metal-free MoSe2 nanoparticles. J Mater Sci 55, 13114–13126 (2020). https://doi.org/10.1007/s10853-020-04945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04945-4

Navigation