Skip to main content
Log in

Segregation of alloying elements and their effects on the thermodynamic stability and fracture strength of γ-Ni/γ′-Ni3Al interface

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The γ/γ’ phase interface, being the main plane defect in nickel-based single-crystal superalloys, can have a significant effect on the microstructural stability and mechanical properties of superalloys. To improve the thermodynamic stability and fracture strength of the γ-Ni/γ’-Ni3Al interface and gain insight into the underlying micro-mechanisms, the segregation tendency of 12 alloying elements X at the γ-Ni/γ’-Ni3Al interface and their effects on the interfacial formation and Griffith fracture works were investigated by using first-principles calculations. It is found that all alloying elements X can segregate to the corner-point site of the γ-Ni (001) layer except the element Y. The Re-, Ti-, Mo-, W-, Cr-, Nb-, Ta-, Hf- and Zr-segregated interfaces are more stable than the unalloyed interface due to the presence of pseudogap and lower values of densities of states at the Fermi level. The segregation of Ru, Co, Re, Mo, W, Cr, Nb and Ta strengthens the interfacial fracture strength, which can be mainly attributed to the enhanced bonding strengths of X–Ni bonds formed in these segregated interfaces. The interfacial segregation of Cr, Re, Mo, W, Nb and Ta can not only improve the thermodynamic stability but also enhance the fracture strength of the phase interface. The segregation of Ta and Re is able to improve the thermodynamic stability and fracture strength of the γ-Ni/γ’-Ni3Al interface to the maximum extent, respectively.

Graphic abstract

The effect of interfacial segregation of alloying elements on the fracture strength and thermodynamic stability of the γ-Ni/γ’-Ni3Al phase interface and the underlying mechanisms are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hou H, Wen Z, Zhao Y, Fu L, Wang N, Han P (2014) First-principles investigations on structural, elastic, thermodynamic and electronic properties of Ni3X (X = Al, Ga and Ge) under pressure. Intermetallics 44:110–115

    Article  CAS  Google Scholar 

  2. Sun M, Wang CY (2016) First principles study of the diffusional phenomena across the clean and Re-doped γ-Ni/γ’-Ni3Al interface of Ni-based single crystal superalloy. Chin Phys B 6:397–406

    Google Scholar 

  3. Bochenek K, Basista M (2015) Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog Aerosp Sci 79:136–146

    Article  Google Scholar 

  4. Le Graverend JB, Jacques A, Cormier J, Ferry O, Schenk T, Mendez J (2015) Creep of a nickel-based single-crystal superalloy during very high-temperature jumps followed by synchrotron X-ray diffraction. Acta Mater 84:65–79

    Article  CAS  Google Scholar 

  5. Lv X, Zhang J (2017) Core structure of a < 100 > interf acial superdislocations in a nickel-base superalloy during high-temperature and low-stress creep. Mater Sci Eng, A 683:9–14

    Article  CAS  Google Scholar 

  6. Ru Y, Li S, Zhou J, Pei Y, Wang H, Gong S, Xu H (2016) Dislocation network with pair-coupling structure in 111 γ/γ′ interface of Ni-based single crystal superalloy. Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  7. Bagot PA, Silk OB, Douglas JO, Pedrazzini S, Crudden DJ, Martin TL, Hardy MC, Moody MP, Reed RC (2017) An Atom Probe Tomography study of site preference and partitioning in a nickel-based superalloy. Acta Mater 125:156–165

    Article  CAS  Google Scholar 

  8. Tu Y, Mao Z, Seidman DN (2012) Phase-partitioning and site-substitution patterns of molybdenum in a model Ni–Al–Mo superalloy: an atom-probe tomographic and first-principles study. Appl Phys Lett 101:121910–121914

    Article  CAS  Google Scholar 

  9. Amouyal Y, Mao Z, Seidman DN (2010) Effects of tantalum on the partitioning of tungsten between the γ-and γ′-phases in nickel-based superalloys: linking experimental and computational approaches. Acta Mater 18:5898–5911

    Article  CAS  Google Scholar 

  10. Ding Q, Li S, Chen LQ, Han X, Zhang Z, Yu Q, Li J (2018) Re segregation at interfacial dislocation network in a nickel-based superalloy. Acta Mater 154:137–146

    Article  CAS  Google Scholar 

  11. Huang M, Cheng Z, Xiong J, Li J, Hu J, Liu Z, Zhu J (2014) Coupling between Re segregation and γ/γ′ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy. Acta Mater 76:294–305

    Article  CAS  Google Scholar 

  12. Raabe D, Sandlöbes S, Millán J, Ponge D, Assadi H, Herbig M, Choi PP (2013) Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite. Acta Mater 16:6132–6152

    Article  CAS  Google Scholar 

  13. Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18:253–261

    Article  CAS  Google Scholar 

  14. Xiong H, Liu Z, Zhang H, Du Z, Chen C (2017) First principles calculation of interfacial stability, energy and electronic properties of SiC/ZrB2 interface. J Phys Chem Solids 107:162–169

    Article  CAS  Google Scholar 

  15. Mahjoub R, Laws KJ, Stanford N, Ferry M (2018) General trends between solute segregation tendency and grain boundary character in aluminum: an ab inito study. Acta Mater 158:257–268

    Article  CAS  Google Scholar 

  16. Razumovskiy VI, Lozovoi AY, Razumovskii IM (2015) First-principles-aided design of a new Ni-base superalloy: influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater 82:369–377

    Article  CAS  Google Scholar 

  17. Yamaguchi M, Shiga M, Kaburaki H (2005) Grain boundary decohesion by impurity segregation in a nickel-sulfur system. Science 307:393–397

    Article  CAS  Google Scholar 

  18. Zhang S, Kontsevoi OY, Freeman AJ, Olson GB (2011) First principles investigation of zinc-induced embrittlement in an aluminum grain boundary. Acta Mater 59:6155–6167

    Article  CAS  Google Scholar 

  19. Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340:957–960

    Article  CAS  Google Scholar 

  20. Tsuru T, Somekawa H, Chrzan DC (2018) Interfacial segregation and fracture in Mg-based binary alloys: experimental and first-principles perspective. Acta Mater 151:78–86

    Article  CAS  Google Scholar 

  21. Bauer KD, Todorova M, Hingerl K, Neugebauer J (2015) A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. Acta Mater 90:69–76

    Article  CAS  Google Scholar 

  22. Wang J, Janisch R, Madsen GK, Drautz R (2016) First-principles study of carbon segregation in bcc iron symmetrical tilt grain boundaries. Acta Mater 115:259–268

    Article  CAS  Google Scholar 

  23. Kang J, Glatzmaier GC, Wei SH (2013) Origin of the bismuth-induced decohesion of nickel and copper grain boundaries. Phys Rev Lett 111:055502–055505

    Article  CAS  Google Scholar 

  24. Gong XF, Yang GX, Fu YH, Xie YQ, Zhuang J, Ning XJ (2009) First-principles study of Ni/Ni3Al interface strengthening by alloying elements. Comput Mater Sci 47:320–325

    Article  CAS  Google Scholar 

  25. Wang C, Wang CY (2008) Density functional theory study of Ni/Ni3Al interface alloying with Re and Ru. Surf Sci 602:2604–2609

    Article  CAS  Google Scholar 

  26. Chen K, Zhao LR, John ST (2003) Synergetic effect of Re and Ru on γ/γ′ interface strengthening of Ni-base single crystal superalloys. Mater Sci Eng, A 360:197–201

    Article  CAS  Google Scholar 

  27. Zhu T, Wang CY, Gan Y (2010) Effect of Re in γ phase, γ′ phase and γ/γ′ interface of Ni-based single-crystal superalloys. Acta Mater 58:2045–2055

    Article  CAS  Google Scholar 

  28. Wang YJ, Wang CY (2008) A first-principles survey of the partitioning behaviors of alloying elements on γ/γ′ interface. J Appl Phys 104:013109

    Article  CAS  Google Scholar 

  29. Peng P, Soh AK, Yang R, Hu ZQ (2006) First-principles study of alloying effect of Re on properties of Ni/Ni3Al interface. Comput Mater Sci 38:354–361

    Article  CAS  Google Scholar 

  30. Peng L, Peng P, Liu YG, He S, Wei H, Jin T, Hu ZQ (2012) The correlation between Re and P and their synergetic effect on the rupture strength of the γ-Ni/γ′-Ni3Al interface. Comput Mater Sci 63:292–302

    Article  CAS  Google Scholar 

  31. Cheng YW, Tang FL, Xue HT, Liu HX, Gao B, Feng YD (2016) Bonding and electronic properties of the Cu2ZnSnS4/WZ–ZnO interface from first-principles calculations. J Phys D Appl Phys 49:285107–285110

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  35. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  36. Tian D, Chen Y, Jiang Y, Yi Z, Peng P (2018) Effect of P-doping on the rupture strength of γ-Ni/γ’-Ni3Al interfaces. IOP Conf Ser Mater Sci Eng 381:012161–012169

    Article  Google Scholar 

  37. Wu X, You YW, Kong XS, Chen JL, Luo GN, Lu GH, Liu CS, Wang Z (2016) First-principles determination of grain boundary strengthening in tungsten: dependence on grain boundary structure and metallic radius of solute. Acta Mater 120:315–326

    Article  CAS  Google Scholar 

  38. He S, Peng P, Peng L, Chen Y, Wei H, Hu ZQ (2014) An interplay of sulfur and phosphorus at the γ-Ni/γ′-Ni3Al interface. J Alloys Compd 597:243–248

    Article  CAS  Google Scholar 

  39. Peng L, Peng P, Wen DD, Liu YG, Wei H, Sun XF, Hu ZQ (2011) Site preference of S-doping and its influence on the properties of a Ni/Ni3Al interface. Modell Simul Mater Sci Eng 19:065002–065016

    Article  CAS  Google Scholar 

  40. Zhao W, Sun Z, Gong S (2017) Vacancy mediated alloying strengthening effects on γ/γ′ interface of Ni-based single crystal superalloys: a first-principles study. Acta Mater 135:25–34

    Article  CAS  Google Scholar 

  41. Du YL, Sun ZM, Hashimoto H (2010) First-principles study on phase stability and compression behavior of Ti2SC and Ti2AlC. Phys B 405:720–723

    Article  CAS  Google Scholar 

  42. Shi YJ, Du YL, Chen G, Chen GL (2007) First principle study on phase stability and electronic structure of YCu. Phys Lett A 368:495–498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (Grant No. 2017YFA0700701), the Joint Fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (Grant No. 18LHPY003), the National Natural Science Foundation of China (Grant No. 11764027) and the Hongliu Excellent Young Talents Support Program of Lanzhou University of Technology. This work was performed in the Gansu Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Tao Xue or Fu-Ling Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F.A.M., Xue, HT., Tang, FL. et al. Segregation of alloying elements and their effects on the thermodynamic stability and fracture strength of γ-Ni/γ′-Ni3Al interface. J Mater Sci 55, 12513–12524 (2020). https://doi.org/10.1007/s10853-020-04854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04854-6

Navigation