Skip to main content
Log in

Recent advances in synthesis and application of organic near-infrared fluorescence polymers

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biofluorescence imaging enables real-time, visual detection of biomolecules, cells and tissues/organs on a three-dimensional scale. And it can track the various physiological processes of the organism and understand the relationship between biomolecules and their structure and function. Near-infrared imaging has a high temporal and spatial resolution, low damage to biological tissues and strong penetrating capability, good sensitivity and low background fluorescence interference, which are the advantages of imaging technology. However, at present, the deficiencies of fluorescent groups include relatively low fluorescence quantum yield and unfavorably short emission wavelength in the NIR region, especially in the second near-infrared window (1000–1700 nm, NIR-II). In the in vivo processes and applications of NIR fluorescence materials, biocompatibility, fluorescence quantum efficiency and adjustability of excitation and emission wavelengths in the NIR region should be considered. Therefore, organic polymeric materials are ideal for the construction of the NIR fluorescence probe. In this review, the synthesis and applications of NIR fluorescence polymers were summarized and the future trend has prospected as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1

Copyright 2014 Nature Publishing Group

Figure 2

Copyright 2014 Nature Publishing Group

Scheme 2

Copyright 2017 American Chemical Society

Figure 3

Copyright 2017 American Chemical Society

Scheme 3

Copyright 2011 Nature Publishing Group

Figure 4

Copyright 2011 Nature Publishing Group

Scheme 4

Copyright 2017 Elsevier BV

Figure 5

Copyright 2018 Wiley-Blackwell

Figure 6

Copyright 2019 Wiley–VCH Verlag

Figure 7

Copyright 2019 Wiley-Blackwell

Scheme 5

Copyright 2008 American Chemical Society

Figure 8

Copyright 2016 Nature Publishing Group

Scheme 6

Copyright 2016 Nature Publishing Group

Scheme 7

Copyright 2017 Royal Society of Chemistry

Figure 9

Copyright 2017 Royal Society of Chemistry

Scheme 8

Copyright 2017 Wiley-Blackwell

Scheme 9

Copyright 2018 Royal Society of Chemistry

Figure 10

Copyright 2018 Royal Society of Chemistry

Scheme 10

Copyright 2019 Royal Society of Chemistry

Scheme 11

Copyright 2015 Royal Society of Chemistry

Scheme 12

Copyright 2018 American Chemical Society

Figure 11

Copyright 2018 American Chemical Society

Figure 12

Copyright 2013 Wiley–VCH Verlag

Scheme 13

Copyright 2013 Wiley–VCH Verlag

Scheme 14

Copyright 2017 John Wiley and Sons Ltd

Scheme 15

Copyright 2017 Nature Publishing Group

Figure 13

Copyright 2017 Nature Publishing Group

Scheme 16

Copyright 2017 Nature Publishing Group

Scheme 17

Copyright 2018 John Wiley and Sons Ltd

Figure 14

Copyright 2018 John Wiley and Sons Ltd

Figure 15

Copyright 2018 John Wiley and Sons Ltd

Figure 16

Copyright 2018 John Wiley and Sons Ltd

Figure 17

Copyright 2019 Nature Publishing Group

Figure 18

Copyright 2019 Nature Publishing Group

Similar content being viewed by others

References

  1. Lu C, Chen G, Yu B, Cong H (2018) Recent advances of low biological toxicity Ag2S QDs for biomedical application. Adv Eng Mater 20:1700940–1700951

    Article  CAS  Google Scholar 

  2. Zhang H, Chen G, Yu B, Cong H (2018) Emerging advanced nanomaterials for cancer photothermal therapy. Rev Adv Mater Sci 53:131–146

    Article  CAS  Google Scholar 

  3. Yu B, Song N, Hu H, Chen G, Shen Y, Cong H (2018) A degradable triple temperature-, pH-, and redoxresponsive drug system for cancer chemotherapy. J Biomed Mater Res A 106:3203–3210

    Article  CAS  Google Scholar 

  4. Ye Y, Zhu L, Ma Y, Niu G, Chen X (2011) Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorgan Med Chem Lett 21:1146–1150

    Article  CAS  Google Scholar 

  5. Kosaka N, Mitsunaga M, Longmire MR, Choyke PL, Kobayashi H (2011) Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer 129:1671–1677

    Article  CAS  Google Scholar 

  6. Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152

    Article  Google Scholar 

  7. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  Google Scholar 

  8. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  CAS  Google Scholar 

  9. Bates M, Huang B, Rust MJ, Dempsey GT, Wang W, Zhuang X (2009) Sub-diffraction-limit imaging with stochastic optical reconstruction microscopy. In: Springer series in chemical physics, pp 399–415

    Google Scholar 

  10. Wu C, Hansen SJ, Hou Q et al (2011) Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew Chem Int Ed 50:3430–3434

    Article  CAS  Google Scholar 

  11. Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137:10420–10429

    Article  CAS  Google Scholar 

  12. Rogalski A (2010) Infrared detectors. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Rogalski A (2011) Recent progress in infrared detector technologies. Infrared Phys Technol 54:136–154

    Article  Google Scholar 

  14. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010–0031

    Article  CAS  Google Scholar 

  15. Ding X, Liow CH, Zhang M et al (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136:15684–15693

    Article  CAS  Google Scholar 

  16. Antaris AL, Chen H, Cheng K et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242

    Article  CAS  Google Scholar 

  17. Lyu Y, Pu K (2017) Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv Sci 4:1600481–1600494

    Article  CAS  Google Scholar 

  18. Jiang Y, Li J, Zhen X, Xie C, Pu K (2018) Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv Mater 30:1705980–1705988

    Article  CAS  Google Scholar 

  19. Zhao DH, Yang J, Xia RX, Yao MH, Jin RM, Zhao YD, Liu B (2018) High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun 54:527–530

    Article  CAS  Google Scholar 

  20. Metlin MT, Ambrozevich SA, Metlina DA, Vitukhnovsky AG, Taydakov IV (2017) Luminescence of pyrazolic 1,3-diketone Pr3+ complex with 1,10-phenanthroline. J Lumin 188:365–370

    Article  CAS  Google Scholar 

  21. Gu C, Du Z, Shen W (2014) Optical, electrochemical, and photovoltaic properties of conjugated polymers with dithiafulvalene as side chains. J Appl Polym Sci 132:41508–41513

    Google Scholar 

  22. Lyu Y, Zhen X, Miao Y, Pu K (2016) Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids. ACS Nano 11:358–367

    Article  CAS  Google Scholar 

  23. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233–239

    Article  CAS  Google Scholar 

  24. Jiang Y, Upputuri PK, Xie C et al (2017) Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett 17:4964–4969

    Article  CAS  Google Scholar 

  25. Zhen X, Feng X, Xie C, Zheng Y, Pu K (2017) Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biomaterials 127:97–106

    Article  CAS  Google Scholar 

  26. Jiang Y, Pu K (2018) Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res 51:1840–1849

    Article  CAS  Google Scholar 

  27. Li J, Pu K (2019) Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 48:38–71

    Article  CAS  Google Scholar 

  28. Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235

    Article  CAS  Google Scholar 

  29. Zhu H, Fang Y, Zhen X et al (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7:5118–5125

    Article  CAS  Google Scholar 

  30. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731

    Article  CAS  Google Scholar 

  31. Zhou N, Dudnik AS, Li TING et al (2016) All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers. J Am Chem Soc 138:1240–1251

    Article  CAS  Google Scholar 

  32. Lee C, Kang H, Lee W, Kim T, Kim KH, Woo HY, Wang C, Kim BJ (2015) High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv Mater 27:2466–2471

    Article  CAS  Google Scholar 

  33. Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AK (2015) Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv Mater 27:3310–3317

    Article  CAS  Google Scholar 

  34. Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J (2015) Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv Mater 27:6046–6054

    Article  CAS  Google Scholar 

  35. Cheng P, Ye L, Zhao X, Hou J, Li Y, Zhan X (2014) Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy Environ Sci 7:1351–1356

    Article  CAS  Google Scholar 

  36. Zhou Y, Kurosawa T, Ma W et al (2014) High performance all-polymer solar cell via polymer side-chain engineering. Adv Mater 26:3767–3772

    Article  CAS  Google Scholar 

  37. Mu C, Liu P, Ma W et al (2014) High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv Mater 26:7224–7230

    Article  CAS  Google Scholar 

  38. Mori D, Benten H, Okada I, Ohkita H, Ito S (2014) Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ Sci 7:2939–2943

    Article  CAS  Google Scholar 

  39. Schubert M, Collins BA, Mangold H et al (2014) Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells. Adv Funct Mater 24:4068–4081

    Article  CAS  Google Scholar 

  40. Pu K, Mei J, Jokerst JV (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27:5184–5190

    Article  CAS  Google Scholar 

  41. Wu C, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52:3086–3109

    Article  CAS  Google Scholar 

  42. Zhu C, Liu L, Yang Q, Lv F, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112:4687–4735

    Article  CAS  Google Scholar 

  43. Howes P, Green M, Levitt J, Suhling K, Hughes M (2010) Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. J Am Chem Soc 132:3989–3996

    Article  CAS  Google Scholar 

  44. Jiang Y, Pu K (2017) Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles. Small 13:1700710–1700728

    Article  CAS  Google Scholar 

  45. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279

    Article  CAS  Google Scholar 

  46. Pu KY, Liu B (2013) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423

    Article  CAS  Google Scholar 

  47. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42:6620–6633

    Article  CAS  Google Scholar 

  48. Wu PJ, Kuo SY, Huang YC, Chen CP, Chan YH (2014) Polydiacetylene-enclosed near-infrared fluorescent semiconducting polymer dots for bioimaging and sensing. Anal Chem 86:4831–4839

    Article  CAS  Google Scholar 

  49. Sun K, Chen H, Wang L et al (2014) Size-dependent property and cell labeling of semiconducting polymer dots. ACS Appl Mater Interfaces 6:10802–10812

    Article  CAS  Google Scholar 

  50. Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D (2012) A convenient preparation of multi-spectral microparticles by bacteria-mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. Adv Mater 24:637–641

    Article  CAS  Google Scholar 

  51. Pu K, Shuhendler AJ, Valta MP, Cui L, Saar M, Peehl DM, Rao J (2014) Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthcare Mater 3:1292–1298

    Article  CAS  Google Scholar 

  52. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  53. Zhang XD, Wang H, Antaris AL et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater 28:6872–6879

    Article  CAS  Google Scholar 

  54. Hong G, Zou Y, Antaris AL et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206–4214

    Article  CAS  Google Scholar 

  55. Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1848

    Article  CAS  Google Scholar 

  56. Yuan J, Ouyang J, Cimrová V, Leclerc M, Najari A, Zou Y (2017) Development of quinoxaline based polymers for photovoltaic applications. J Mater Chem C 5:1858–1879

    Article  CAS  Google Scholar 

  57. Ke CS, Fang CC, Yan JY et al (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano 11:3166–3177

    Article  CAS  Google Scholar 

  58. Aoki H, Kakuta JI, Yamaguchi T, Nitahara S, Ito S (2011) Near-infrared fluorescent nanoparticle of low-bandgap π-conjugated polymer for in vivo molecular imaging. Polym J 43:937–940

    Article  CAS  Google Scholar 

  59. Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K (2017) Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 145:168–177

    Article  CAS  Google Scholar 

  60. Tang Y, Li Y, Lu X et al (2019) Bio-erasable intermolecular donor–acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv Funct Mater 29:1807376–1807384

    Article  CAS  Google Scholar 

  61. Jiang Y, Upputuri PK, Xie C et al (2019) Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv Mater 31:1808166–1808174

    Article  CAS  Google Scholar 

  62. Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H (2018) Recent progress in fluorescence imaging of the near-infrared II window. ChemBioChem 19:2522–2541

    Article  CAS  Google Scholar 

  63. Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang ZY (2008) Band gap tunable, donor–acceptor–donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater 20:6208–6216

    Article  CAS  Google Scholar 

  64. Yang D, Wang H, Sun C et al (2017) Development of a high quantum yield dye for tumour imaging. Chem Sci 8:6322–6326

    Article  CAS  Google Scholar 

  65. Yang Q, Ma Z, Wang H et al (2017) Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater 29:1605497–1605505

    Article  CAS  Google Scholar 

  66. Singha S, Kim D, Roy B et al (2015) A structural remedy toward bright dipolar fluorophores in aqueous media. Chem Sci 6:4335–4342

    Article  CAS  Google Scholar 

  67. Kono T, Kumaki D, Nishida J, Tokito S, Yamashita Y (2010) Dithienylbenzobis(thiadiazole) based organic semiconductors with low LUMO levels and narrow energy gaps. Chem Commun 46:3265–3267

    Article  CAS  Google Scholar 

  68. Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2011) Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. J Mater Chem 21:4679–4688

    Article  CAS  Google Scholar 

  69. Wang Y, Kadoya T, Wang L, Hayakawa T, Tokita M, Mori T, Michinobu T (2015) Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport. J Mater Chem C 3:1196–1207

    Article  CAS  Google Scholar 

  70. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  71. Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris AL, Zhang B, Zou Y, Dai H (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed Engl 52:13002–13006

    Article  CAS  Google Scholar 

  72. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  73. Kang H, Gravier J, Bao K et al (2016) Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv Mater 28:8162–8168

    Article  CAS  Google Scholar 

  74. Yang Q, Hu Z, Zhu S (2018) Donor Engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc 140:1715–1724

    Article  CAS  Google Scholar 

  75. Tian R, Ma H, Yang Q et al (2019) Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci 10:326–332

    Article  CAS  Google Scholar 

  76. Colson JW, Woll AR, Mukherjee A et al (2011) Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228–231

    Article  CAS  Google Scholar 

  77. Lin CY, Zhang D, Zhao Z, Xia Z (2017) Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater 30:1703646–1703661

    Article  CAS  Google Scholar 

  78. Ding SY, Wang W et al (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568

    Article  CAS  Google Scholar 

  79. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135:5328–5331

    Article  CAS  Google Scholar 

  80. Fang Q, Wang J, Gu S et al (2015) 3D Porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137:8352–8355

    Article  CAS  Google Scholar 

  81. Zhou TY, Xu SQ, Wen Q, Pang ZF, Zhao X (2014) One-step construction of two different kinds of pores in a 2D covalent organic framework. J Am Chem Soc 136:15885–15888

    Article  CAS  Google Scholar 

  82. Wang X, Ye N (2017) Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38:3059–3078

    Article  CAS  Google Scholar 

  83. Beuerle F, Gole B (2018) Covalent organic frameworks and cage compounds: design and applications of polymeric and discrete organic scaffolds. Angew Chem Int Ed 57:4850–4878

    Article  CAS  Google Scholar 

  84. Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238

    Article  CAS  Google Scholar 

  85. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133:19816–19822

    Article  CAS  Google Scholar 

  86. Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV (2018) H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett 3:400–409

    Article  CAS  Google Scholar 

  87. Rogge SMJ, Bavykina A, Hajek J et al (2017) Metal–organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184

    Article  CAS  Google Scholar 

  88. Sun D, Jang S, Yim SJ, Ye L, Kim DP (2018) Metal doped core-shell metal-organic frameworks@ covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater 28:1707110–1707116

    Article  CAS  Google Scholar 

  89. Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2:672–677

    Article  CAS  Google Scholar 

  90. Spitler EL, Colson JW, Uribe-Romo FJ, Woll AR, Giovino MR, Saldivar A, Dichtel WR (2012) Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew Chem Int Ed 51:2623–2627

    Article  CAS  Google Scholar 

  91. Mandal AK, Mahmood J, Baek JB (2017) Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat 3:373–391

    Article  CAS  Google Scholar 

  92. Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W (2018) 2D Organic materials for optoelectronic applications. Adv Mater 30:1702415–1702441

    Article  CAS  Google Scholar 

  93. Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T (2013) A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew Chem Int Ed 52:2920–2924

    Article  CAS  Google Scholar 

  94. Zhang J, Xu L, Wong WY (2018) Energy materials based on metal Schiff base complexes. Coordin Chem Rev 355:180–198

    Article  CAS  Google Scholar 

  95. Tegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793

    Article  Google Scholar 

  96. Lin S, Diercks CS, Zhang YB et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208–1213

    Article  CAS  Google Scholar 

  97. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508–8516

    Article  CAS  Google Scholar 

  98. Yang LM, Ganz E, Wang S, Li XJ, Frauenheim T (2015) Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. J Mater Chem C 3:2244–2254

    Article  CAS  Google Scholar 

  99. Feng X, Chen L, Honsho Y (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24:3026–3031

    Article  CAS  Google Scholar 

  100. Wan S, Guo J, Kim J, Ihee H, Jiang D (2009) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew Chem Int Ed 48:5439–5442

    Article  CAS  Google Scholar 

  101. Jiang JX, Trewin A, Adams DJ, Cooper AI (2011) Band gap engineering in fluorescent conjugated microporous polymers. Chem Sci 2:1777–1781

    Article  CAS  Google Scholar 

  102. Guo L, Cao D (2015) Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. J Mater Chem C 3:8490–8494

    Article  CAS  Google Scholar 

  103. Wang M, Guo L, Cao D (2018) Covalent organic polymers for rapid fluorescence imaging of latent fingerprints. ACS Appl Mater Interfaces 10:21619–21627

    Article  CAS  Google Scholar 

  104. Dalapati S, Jin E, Addicoat M, Heine T, Jiang D (2016) Highly emissive covalent organic frameworks. J Am Chem Soc 138:5797–5800

    Article  CAS  Google Scholar 

  105. Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP (2018) Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 47:514–532

    Article  CAS  Google Scholar 

  106. Yu T, Liu X, Bolcato-Bellemin AL (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed 51:8478–8484

    Article  CAS  Google Scholar 

  107. Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic polyglycerols for biomedical applications. Adv Mater 22:190–218

    Article  CAS  Google Scholar 

  108. Heek T, Wurthner F, Haag R (2013) Synthesis and optical properties of water-soluble polyglycerol-dendronized rylene bisimide dyes. Chem Eur J 19:10911–10921

    Article  CAS  Google Scholar 

  109. Lyu Y, Cui D, Sun H, Miao Y, Duan H, Pu K (2017) Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew Chem Int Ed 56:9155–9159

    Article  CAS  Google Scholar 

  110. Cui D, Xie C, Li J, Lyu Y, Pu K (2018) Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv Healthcare Mater 7:1800329–1800335

    Article  CAS  Google Scholar 

  111. Xie C, Zhen X, Miao Q, Lyu Y, Pu K (2018) Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv Mater 30:1801331–1801339

    Article  CAS  Google Scholar 

  112. Abdukayum A, Chen JT, Zhao Q, Yan XP (2013) Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135:14125–14133

    Article  CAS  Google Scholar 

  113. Liu F, Yan W, Chuang YJ, Zhen Z, Xie J, Pan Z (2013) Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci Rep 3:1554–1562

    Article  CAS  Google Scholar 

  114. Shi J, Sun X, Li J, Man H, Shen J, Yu Y, Zhang H (2015) Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37:260–270

    Article  CAS  Google Scholar 

  115. Kamimura S, Xu CN, Yamada H, Marriott G, Hyodo K, Ohno T (2017) Near-infrared luminescence from double-perovskite Sr3Sn2O7:Nd3+: a new class of probe for in vivo imaging in the second optical window of biological tissue. J Ceram Soc Jpn 125:591–595

    Article  CAS  Google Scholar 

  116. Wu Y, Li Y, Qin X, Chen R, Wu D, Liu S, Qiu J (2015) Near-infrared long-persistent phosphor of Zn3Ga2Ge2O10: Cr3+ sintered in different atmosphere. Spectrochim Acta Part A Mol Biomol Spectrosc 151:385–389

    Article  CAS  Google Scholar 

  117. Du J, De COQ, Korthout K, Poelman D (2017) LaAlO3:Mn4+ as near-infrared emitting persistent luminescence phosphor for medical imaging: a charge compensation study. Materials 10:1422–1435

    Article  CAS  Google Scholar 

  118. Wang Q, Zhang S, Li Z, Zhu Q (2018) Near infrared-emitting Cr3+/Eu3+ Co-doped zinc gallogermanate persistence luminescent nanoparticles for cell imaging. Nanoscale Res Lett 13:1–9

    Article  CAS  Google Scholar 

  119. Masne Le, de Chermont Q, Chaneac C, Seguin J et al (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci 104:9266–9271

    Article  CAS  Google Scholar 

  120. Maldiney T, Viana B, Bessière A, Gourier D, Bessodes M, Scherman D, Richard C (2013) In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt Mater 35:1852–1858

    Article  CAS  Google Scholar 

  121. Miao Q, Xie C, Zhen X et al (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110

    Article  CAS  Google Scholar 

  122. Jiang Y, Huang J, Zhen X et al (2019) A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21574072, 21675091, 21874078, 21807062), the Taishan Young Scholar Program of Shandong Province (tsqn20161027), the Key Research and Development Project of Shandong Province (2016GGX102028, 2016GGX102039, 2017GGX20111), the Major Science and Technology Innovation Project of Shandong Province(2018CXGC1407), the Project of Shandong Province Higher Educational Science and Technology Program (J15LC20), the People’s Livelihood Science and Technology Project of Qingdao (166257nsh, 173378nsh), the Innovation Leader Project of Qingdao (168325zhc), the Shandong Provincial Natural Science Foundation (ZR2018BB014), the China Postdoctoral Science Foundation (2017M612192), the Source Innovation Project of Qingdao (171183jch) and the First Class Discipline Project of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Cong.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, W., Zhu, Y., Gu, C. et al. Recent advances in synthesis and application of organic near-infrared fluorescence polymers. J Mater Sci 55, 9918–9947 (2020). https://doi.org/10.1007/s10853-020-04800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04800-6

Navigation