Skip to main content

Advertisement

Log in

A facile route to construct NiTiO3/Bi4NbO8Cl heterostructures for enhanced photocatalytic water purification

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

NiTiO3/Bi4NbO8Cl heterostructure photocatalysts were successfully synthesized by a mechanical mixing method. The crystal structure, morphology, optical properties and energy band structures of all samples were determined by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, ultraviolet–visible diffuse reflection spectra (UV–Vis DRS), and Mott–Schottky tests. The NiTiO3/Bi4NbO8Cl composites were observed to possess an improved activity in the photocatalytic degradation of organic dye rhodamine B (RhB) under irradiation. In particular, Bi4NbO8Cl modified with NiTiO3 (10% in weight) exhibits the best photocatalytic performance. The enhanced photocatalytic performance can be ascribed to the formation of intimate interfacial contact and type-II band alignment between NiTiO3 and Bi4NbO8Cl. From the results of photoluminescence spectra (PL), time-resolved decay spectra (TR-PL), photocurrent and electrochemical impedance spectroscopy, the rapid separation and transportation of photoinduced charge carriers were proved. In addition, the proposed mechanism for the enhanced photocatalytic activities is proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jiang H, Zhao T, Yang Z, Xing Z, Li Z, Zou J, Pan K, Zhou W (2019) Earth-rich Ni2P/Ni(PO3)2 co-catalysts promoted electron-hole separation for g-C3N4 nanosheets visible light photocatalysts. J Taiwan Inst Chem E 104:160–167. https://doi.org/10.1016/j.jtice.2019.09.002

    Article  CAS  Google Scholar 

  2. Yang B, Bai X, Wang J, Fang M, Wu X, Liu Y, Huang Z, Lao C, Min X (2019) Photocatalytic performance of NiO/NiTiO3 composite nanofiber films. Catal 9:561. https://doi.org/10.3390/catal9060561

    Article  CAS  Google Scholar 

  3. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  4. Liu E, Wang X, Liu H, Liang M, Zhu Y, Li Z (2019) Chemical speciation, pollution and ecological risk of toxic metals in readily washed off road dust in a megacity (Nanjing). China Ecoto Environ Safe 173:381–392. https://doi.org/10.1016/j.ecoenv.2019.02.019

    Article  CAS  Google Scholar 

  5. Liu L, Bilal M, Duan X, Iqbal HMN (2019) Mitigation of environmental pollution by genetically engineered bacteria—Current challenges and future perspectives. Sci Total Environ 667:444–454. https://doi.org/10.1016/j.scitotenv.2019.02.390

    Article  CAS  Google Scholar 

  6. Zhou Y, Zahran EM, Quiroga BA et al (2019) Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. App Catal B: Environ 248:157–166. https://doi.org/10.1016/j.apcatb.2019.02.019

    Article  CAS  Google Scholar 

  7. Zhao Y, Min X, Ding Z et al (2019) Metal-based nanocatalysts via a universal design on cellular structure. Adv Sci. https://doi.org/10.1002/advs.201902051

    Article  Google Scholar 

  8. Wang F, Gu Y, Yang Z et al (2018) The effect of halogen on BiOX (X = Cl, Br, I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation. Appl Catal A: Gen 567:65–72. https://doi.org/10.1016/j.apcata.2018.09.010

    Article  CAS  Google Scholar 

  9. Wang Y, Jiang S, Liu F, Zhao C, Zhao D, Li X (2019) Study on preparation and toluene removal of BiOI/Bi2WO6/ACF photocatalyst. Appl Surf Sci 488:161–169. https://doi.org/10.1016/j.apsusc.2019.05.228

    Article  CAS  Google Scholar 

  10. Wang K, Li Y, Zhang G, Li J, Wu X (2019) 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight. Appl Catal B: Environ 240:39–49. https://doi.org/10.1016/j.apcatb.2018.08.063

    Article  CAS  Google Scholar 

  11. Pandey A, Naresh G, Mandal TK (2017) Sunlight responsive new Sillén-Aurivillius A1X1 hybrid layered oxyhalides with enhanced photocatalytic activity. Sol Energ Mat Sol C 161:197–205. https://doi.org/10.1016/j.solmat.2016.11.040

    Article  CAS  Google Scholar 

  12. Fujito H, Kunioku H, Kato D et al (2016) Layered Perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J Am Chem Soc 138:2082–2085. https://doi.org/10.1002/chin.201626012

    Article  CAS  Google Scholar 

  13. Peng Q, Xiong R, Sa B et al (2017) Computational mining of photocatalysts for water splitting hydrogen production: two-dimensional InSe-family monolayers. Catal Sci Technol 7:2744–2752. https://doi.org/10.1039/C7CY00090A

    Article  CAS  Google Scholar 

  14. Bhat SSM, Sundaram NG (2015) Photocatalysis of Bi4NbO8Cl hierarchical nanostructure for degradation of dye under solar/UV irradiation. New J Chem 39:3956–3963. https://doi.org/10.1039/c4nj01814a

    Article  CAS  Google Scholar 

  15. Kunioku H, Higashi M, Tomita O et al (2018) Strong hybridization between Bi-6s and O-2p orbitals in Sillén-Aurivillius perovskite Bi4MO8X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation. J Mater Chem A 6:3100–3107. https://doi.org/10.1039/C7TA08619A

    Article  CAS  Google Scholar 

  16. Ni G, Li Y, Chen H, Wang Z, Qin X, Zhang X, Huang B, Li F, Liu H (2019) The Sol-gel method synthesis of Bi4NbO8Cl with (001) facets exposed for high visible-light activity. J Mater Sci-Mater El 30:7907–7915. https://doi.org/10.1007/s10854-019-01112-7

    Article  CAS  Google Scholar 

  17. You Y, Wang S, Xiao K, Ma T, Zhang Y, Huang H (2018) Z-scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustain Chem Eng 6:16219–16227. https://doi.org/10.1021/acssuschemeng.8b03075

    Article  CAS  Google Scholar 

  18. Lin X, Huang T, Huang F, Wang W, Shi J (2007) Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl. J Mater Chem 17:2145–2150. https://doi.org/10.1039/b615903f

    Article  CAS  Google Scholar 

  19. Qu X, Liu M, Zhai H, Zhao X, Shi L, Du F (2019) Plasmonic Ag-promoted layered perovskite oxyhalide Bi4NbO8Cl for enhanced photocatalytic performance towards water decontamination. J Alloy Compd 810:151919. https://doi.org/10.1016/j.jallcom.2019.151919

    Article  CAS  Google Scholar 

  20. Pham T-T, Shin EW (2018) Thermal formation effect of g-C3N4 structure on the visible light driven photocatalysis of g-C3N4/NiTiO3 Z-scheme composite photocatalysts. Appl Surf Sci 447:757–766. https://doi.org/10.1016/j.apsusc.2018.04.051

    Article  CAS  Google Scholar 

  21. He X, Wang F, Liu H, Li J, Niu L (2017) Synthesis and coloration of highly dispersed NiTiO3@TiO2 yellow pigments with core-shell structure. J Eur Ceram Soc 37:2965–2972. https://doi.org/10.1016/j.jeurceramsoc.2017.03.020

    Article  CAS  Google Scholar 

  22. Zhang Y, Gu J, Murugananthan M, Zhang Y (2015) Development of novel α-Fe2O3/NiTiO3 heterojunction nanofibers material with enhanced visible-light photocatalytic performance. J Alloy Compd 630:110–116. https://doi.org/10.1016/j.jallcom.2014.12.193

    Article  CAS  Google Scholar 

  23. Thiagarajan V, Manoharan R, Karthikeyan P, Nikhila E, Hernández-Ramírez A, Rodriguez-Varela FJ (2017) Pt nanoparticles supported on NiTiO3/C as electrocatalyst towards high performance methanol oxidation reaction. Int J Hydrog Energy 42:9795–9805. https://doi.org/10.1016/j.ijhydene.2017.01.017

    Article  CAS  Google Scholar 

  24. Anandan S, Lana-Villarreal T, Wu JJ (2015) Sonochemical synthesis of mesoporous NiTiO3 ilmenite nanorods for the catalytic degradation of tergitol in water. Ind Eng Chem Res 54:2983–2990. https://doi.org/10.1016/j.jorganchem.2012.06.018

    Article  CAS  Google Scholar 

  25. Li J, Zhang W, Ran M, Sun Y, Huang H, Dong F (2019) Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: enhanced photocatalysis and reaction mechanism. Appl Catal B: Environ 243:313–321. https://doi.org/10.1016/j.apcatb.2018.10.055

    Article  CAS  Google Scholar 

  26. Wen P, Yao F, Hu D et al (2018) Changes in cell parameters and improvement in photocatalytic activity of KNbO3 and NaNbO3 crystals via polarization. Mater Des 158:5–18. https://doi.org/10.1016/j.matdes.2018.08.016

    Article  CAS  Google Scholar 

  27. Huang Y, Mi L, Liu X, Bi S, Seo HJ (2019) Co-precipitation preparation and photocatalytic performances of BiNb5O14/Nb2O5 heterojunction. J Lumin 207:149–156. https://doi.org/10.1016/j.jlumin.2018.11.019

    Article  CAS  Google Scholar 

  28. Liu W, Qiao L, Zhu A, Liu Y, Pan J (2017) Constructing 2D BiOCl/C3N4 layered composite with large contact surface for visible-light-driven photocatalytic degradation. Appl Surf Sci 426:897–905. https://doi.org/10.1016/j.apsusc.2017.07.225

    Article  CAS  Google Scholar 

  29. Inceesungvorn B, Teeranunpong T, Nunkaew J, Suntalelat S, Tantraviwat D (2014) Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light. Catal Commun 54:35–38. https://doi.org/10.1016/j.catcom.2014.05.015

    Article  CAS  Google Scholar 

  30. Nadarajan R, Bakar WAWA, Toemen S, Habib MA, Eleburuike NA (2018) Structure-activity relationship of TiO2 based trimetallic oxide towards 1,2-dichlorobenzene photodegradation: Influence of preparation method and its mechanism. Chem Eng J 351:708–720. https://doi.org/10.1016/j.cej.2018.06.135

    Article  CAS  Google Scholar 

  31. Lin Y, Chang Y, Chen G, Chang Y, Chang Y (2009) Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. J Alloy Compd 479:785–790. https://doi.org/10.1016/j.jallcom.2009.01.061

    Article  CAS  Google Scholar 

  32. Moghiminia S, Farsi H, Raissi H (2014) Comparative optical and electrochemical studies of nanostructured NiTiO3 and NiTiO3–TiO2 prepared by a low temperature modified Sol-Gel route. Electrochim Acta 132:512–523. https://doi.org/10.1016/j.electacta.2014.03.166

    Article  CAS  Google Scholar 

  33. Ma S, Zhan S, Jia Y, Shi Q, Zhou Q (2016) Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl Catal B: Environ 186:77–87. https://doi.org/10.1016/j.apcatb.2015.12.051

    Article  CAS  Google Scholar 

  34. Zhang M, Zhu Y, Li W et al (2018) Double Z-scheme system of silver bromide@bismuth tungstate/tungsten trioxide ternary heterojunction with enhanced visible-light photocatalytic activity. J Colloid Interf Sci 509:18–24. https://doi.org/10.1016/j.jcis.2017.08.095

    Article  CAS  Google Scholar 

  35. Mi Y, Li H, Zhang Y, Zhang R, Hou W (2017) One-pot synthesis of belt-like Bi2S3/BiOCl hierarchical composites with enhanced visible light photocatalytic activity. Appl Sur Sci 423:1062–1071. https://doi.org/10.1016/j.apsusc.2017.06.324

    Article  CAS  Google Scholar 

  36. Jiang Y, Qu F, Tian L, Yang X, Zou Z, Lin Z (2019) Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency. Appl Surf Sci 487:59–67. https://doi.org/10.1016/j.apsusc.2019.05.056

    Article  CAS  Google Scholar 

Download references

Funding

This work was mainly funded by the Nation Natural Science Foundation of China (NSFC, Grant No. 61504073) and A Project of Shandong Province Higher Educational Science and Technology Program (No. J18KA011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Qu or Liang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Liu, M., Zhang, W. et al. A facile route to construct NiTiO3/Bi4NbO8Cl heterostructures for enhanced photocatalytic water purification. J Mater Sci 55, 9330–9342 (2020). https://doi.org/10.1007/s10853-020-04664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04664-w

Navigation