Skip to main content
Log in

Clusters of CuO nanorods arrays for stable lithium metal anode

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium metal anode has attracted wide attention due to the high specific capacity. Unfortunately, many instabilities in cycling such as the growth of dendrites and volume change have seriously hindered the development of lithium metal anode. We demonstrated a promising structure consisting of clusters of CuO nanorods (CCNs) arrays directly grown on Cu foil is prepared by a simple ice-bath solution method. The structure of clusters of CuO nanorods promotes uniform deposition of lithium ions and accommodates lithium availably, therefore restraining the dendrites. An average Coulombic efficiency of 98% can be maintained for 230 cycles at 0.5 mA cm−2. The ultralong cycling stability over 1000 h at 0.5 mA cm−2 can be reached in the symmetric cell. The excellent electrochemical performance of Cu foil with CCNs arrays demonstrates the importance of rational structural design of the lithium framework to stabilize lithium metal anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sun YM, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1(7):16071. https://doi.org/10.1038/NENERGY.2016.71

    Article  CAS  Google Scholar 

  2. Ye H, Xin S, Yin YX et al (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7(23):1700530. https://doi.org/10.1002/aenm.201700530

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  4. Xu W, Wang J, Ding F et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  5. Zhang K, Lee GH, Park M et al (2016) Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv Energy Mater 6(20):1600811. https://doi.org/10.1002/aenm.201600811

    Article  CAS  Google Scholar 

  6. Peng HJ, Huang JQ, Cheng XB et al (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7(24):1700260. https://doi.org/10.1002/aenm.201700260

    Article  CAS  Google Scholar 

  7. Liu YM, Zhang SQ, Qin XY et al (2019) In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition. Nano Lett 19(7):4601–4607

    Article  CAS  Google Scholar 

  8. Lu QW, He YB, Yu QP et al (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29(13):1604460

    Article  Google Scholar 

  9. Han XG, Gong YH, Fu K et al (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16:572–579

    Article  CAS  Google Scholar 

  10. Basile A, Bhatt AI, O’Mullane AP (2016) Anion effect on lithium electrodeposition from N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquid electrolytes. Electrochim Acta 215:19–28

    Article  CAS  Google Scholar 

  11. Zhao CZ, Cheng XB, Zhang R et al (2016) Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater 3:77–84

    Article  Google Scholar 

  12. Li WY, Yao HB, Yan K et al (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436. https://doi.org/10.1038/ncomms8436

    Article  CAS  Google Scholar 

  13. Xu R, Cheng XB, Yan C et al (2019) Artificial interphases for highly stable lithium metal anode. Cell Press 1:317–344

    Google Scholar 

  14. Liu YY, Lin DC, Yuen PY et al (2017) An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531. https://doi.org/10.1002/adma.201605531

    Article  CAS  Google Scholar 

  15. Liang Z, Zheng GY, Liu C et al (2015) Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett 15(5):2910–2916

    Article  CAS  Google Scholar 

  16. Zhang R, Cheng XB, Zhao CZ et al (2016) Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater 28(11):2155–2162

    Article  CAS  Google Scholar 

  17. Ryou MH, Lee YM, Lee YJ et al (2015) Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv Funct Mater 25(6):834–841

    Article  CAS  Google Scholar 

  18. Li Q, Zhu SP, Lu YY (2017) 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater 27(18):1606422. https://doi.org/10.1002/adfm.201606422

    Article  CAS  Google Scholar 

  19. Heine J, Krüger S, Hartnig C et al (2014) Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv Energy Mater 4(5):1300815. https://doi.org/10.1002/aenm.201300815

    Article  CAS  Google Scholar 

  20. Hwang SW, Yom JH, Cho SM et al (2017) Electrochemical behavior of Li–Cu composite powder electrodes in lithium metal secondary batteries. ACS Appl Mater Interfaces 9(27):22530–22538

    Article  CAS  Google Scholar 

  21. Lin DC, Zhao J, Sun J et al (2017) Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc Natl Acad Sci 114(18):4613–4618

    Article  CAS  Google Scholar 

  22. Liu YM, Qin XY, Zhang SQ et al (2019) Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Mater 18:320–327

    Article  Google Scholar 

  23. Liu YM, Qin XY, Zhang SQ et al (2019) A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Mater Chem A 7:13225–13233

    Article  CAS  Google Scholar 

  24. Yan K, Lu ZD, Lee HW et al (2016) Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 1(3):16010. https://doi.org/10.1038/NENERGY.2016.10

    Article  CAS  Google Scholar 

  25. Wang XS, Pan ZH, Wu Y et al (2018) Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res 12(3):525–529

    Article  Google Scholar 

  26. Zhang CZ, Lv W, Zhou GM et al (2018) Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv Energy Mater 8(21):1703404. https://doi.org/10.1002/aenm.201703404

    Article  CAS  Google Scholar 

  27. Wu SL, Zhang ZY, Lan MH et al (2018) Lithiophilic Cu–CuO–Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv Mater 30(9):1705830. https://doi.org/10.1002/adma.201705830

    Article  CAS  Google Scholar 

  28. Zhang HM, Liao XB, Guan YP et al (2018) Lithiophilic–lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat Commun 9:3729. https://doi.org/10.1038/s41467-018-06126-z

    Article  CAS  Google Scholar 

  29. Zhang R, Chen X, Shen X et al (2018) Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2(4):764–777. https://doi.org/10.1016/j.joule.2018.02.001

    Article  CAS  Google Scholar 

  30. Hou GM, Ren XH, Ma XX et al (2018) Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge. J Power Sources 386:77–84

    Article  CAS  Google Scholar 

  31. Jin CB, Sheng OW, Luo JM et al (2017) 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37:177–186

    Article  CAS  Google Scholar 

  32. Yang CP, Yin YX, Zhang SF et al (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058. https://doi.org/10.1038/ncomms9058

    Article  CAS  Google Scholar 

  33. Lu LL, Ge J, Yang JN et al (2016) Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett 16:4431–4437

    Article  CAS  Google Scholar 

  34. Zhang Z, Zhang M, Lu P et al (2019) CuO nanorods growth on folded Cu foil as integrated electrodes with high areal capacity for flexible Li-ion batteries. J Alloys Compd 809:151823. https://doi.org/10.1016/j.jallcom.2019.151823

    Article  CAS  Google Scholar 

  35. Zhang R, Chen XR, Chen X et al (2017) Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed 56(27):7764–7768

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51502044), Natural Science Foundation of Guangxi (2015GXNSFCA139011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang He.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., He, G. Clusters of CuO nanorods arrays for stable lithium metal anode. J Mater Sci 55, 9048–9056 (2020). https://doi.org/10.1007/s10853-020-04633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04633-3

Navigation