Skip to main content
Log in

Anisotropic magnetoresistance and nonvolatile memory in superlattices of La2/3Sr1/3MnO3 and antiferromagnet Sr2IrO4

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Antiferromagnets have attracted considerable interest in the field of spintronics due to their attractive characteristics such as ultrafast spin dynamics and robustness against external magnetic field perturbations. Sr2IrO4 is a rare example of antiferromagnetic semiconductor oxide and has been extensively studied in anisotropic magnetoresistance-based spintronics. However, the anisotropic magnetoresistance of Sr2IrO4 films is usually very small. Herein, we have prepared a (Sr2IrO4)4/(La2/3Sr1/3MnO3)5 superlattice which shows an enhanced anisotropic magnetoresistance compared to Sr2IrO4 film or La2/3Sr1/3MnO3/Sr2IrO4 heterostructure and an obvious nonvolatile memory effect that is comparable to Sr2IrO4 single crystals. Through magnetic measurements, the increased coercivity and the exchange bias at low temperatures reveal the interfacial magnetic coupling between Sr2IrO4 and La2/3Sr1/3MnO3. Additionally, the remarkable anisotropic magnetoresistance and clear hysteresis of anisotropic magnetoresistance with distinct fourfold symmetry can be controlled by temperature and magnetic field. These findings demonstrate that the superlattices of heavy transition metal oxide Sr2IrO4 are excellent platforms for antiferromagnetic spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wang H, Lu C, Chen J et al (2019) Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet Sr2IrO4. Nat Commun 10:1–7

    Article  Google Scholar 

  2. Lu CL, Gao B, Wang HW et al (2018) Revealing controllable anisotropic magnetoresistance in spin–orbit coupled antiferromagnet Sr2IrO4. Adv Funct Mater 28:Article 1706589

    Article  Google Scholar 

  3. Kim WJ, Gruenewald JH, Oh T et al (2018) Unconventional anomalous Hall effect from antiferromagnetic domain walls of Nd2Ir2O7 thin films. Phys Rev B 98:Article 125103

    Article  Google Scholar 

  4. Šmejkal L, Mokrousov Y, Yan B, MacDonald AH (2018) Topological antiferromagnetic spintronics. Nat Phys 14:242–251

    Article  Google Scholar 

  5. Jungwirth T, Marti X, Wadley P, Wunderlich J (2016) Antiferromagnetic spintronics. Nat Nanotechnol 11:231–241

    Article  CAS  Google Scholar 

  6. Sahoo R, Wollmann L, Selle S et al (2016) Compensated ferrimagnetic tetragonal Heusler thin films for antiferromagnetic spintronics. Adv Mater 28:8499–8504

    Article  CAS  Google Scholar 

  7. Park BG, Wunderlich J, Martí X et al (2011) A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat Mater 10:347–351

    Article  CAS  Google Scholar 

  8. Marti X, Fina I, Frontera C et al (2014) Room-temperature antiferromagnetic memory resistor. Nat Mater 13:367–374

    Article  CAS  Google Scholar 

  9. Kriegner D, Výborný K, Olejník K et al (2016) Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat Commun 7:1–7

    Article  Google Scholar 

  10. Wadley P, Howells B, Železný J et al (2016) Electrical switching of an antiferromagnet. Science 351:587–590

    Article  CAS  Google Scholar 

  11. Han W, Otani Y, Maekawa S (2018) Quantum materials for spin and charge conversion. Npj Quantum Mater 3:1–16

    Article  CAS  Google Scholar 

  12. Chappert C, Fert A, Dau FNV (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823

    Article  CAS  Google Scholar 

  13. Baltz V, Manchon A, Tsoi M et al (2018) Antiferromagnetic spintronics. Rev Mod Phys 90:Article 015005

    Article  Google Scholar 

  14. Železný J, Wadley P, Olejník K et al (2018) Spin transport and spin torque in antiferromagnetic devices. Nat Phys 14:220–228

    Article  Google Scholar 

  15. Jackeli G, Khaliullin G (2009) Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys Rev Lett 102:Article 017205

    Article  Google Scholar 

  16. Fujiyama S, Ohsumi H, Ohashi K et al (2014) Spin and orbital contributions to magnetically ordered moments in 5d layered perovskite Sr2IrO4. Phys Rev Lett 112:Article 016405

    Article  Google Scholar 

  17. Jin K, Zhang XH, Bach P, Greene RL (2009) Evidence for antiferromagnetic order in La2−xCexCuO4 from angular magnetoresistance measurements. Phys Rev B 80:Article 012501

    Google Scholar 

  18. Grzybowski MJ, Wadley P, Edmonds KW et al (2017) Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys Rev Lett 118:Article 057701

    Article  Google Scholar 

  19. Chen XZ, Feng JF, Wang ZC et al (2017) Tunneling anisotropic magnetoresistance driven by magnetic phase transition. Nat Commun 8:1–7

    Article  Google Scholar 

  20. Wang C, Seinige H, Cao G et al (2015) Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr2IrO4. J Appl Phys 117:Article 17A310

    Article  Google Scholar 

  21. Wang C, Seinige H, Cao G et al (2014) Anisotropic magnetoresistance in antiferromagnetic Sr2IrO4. Phys Rev X 4:Article 041034

    Google Scholar 

  22. Miao L, Xu H, Mao ZQ (2014) Epitaxial strain effect on the Jeff = 1/2 moment orientation in Sr2IrO4 thin films. Phys Rev B 89:Article 035109

    Google Scholar 

  23. Lu C, Dong S, Quindeau A et al (2015) Dual gate control of bulk transport and magnetism in the spin–orbit insulator Sr2IrO4. Phys Rev B 91:Article 104401

    Article  Google Scholar 

  24. Fina I, Marti X, Yi D et al (2014) Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat Commun 5:1–7

    Article  Google Scholar 

  25. Huang H, Zhai X, Wang J et al (2018) Effect of interface defects on the magnetoresistance in Bi4Ti3O12/(La, Sr)Mn1−xO3 heterostructures. J Mater Sci 53:9627–9634. https://doi.org/10.1007/s10853-018-2256-x

    Article  CAS  Google Scholar 

  26. Xu H, Zhai X, Wang Z et al (2019) An epitaxial synaptic device made by a band-offset BaTiO3/Sr2IrO4 bilayer with high endurance and long retention. Appl Phys Lett 114:Article 102904

    Article  Google Scholar 

  27. Nakao H, Sudayama T, Kubota M et al (2015) Magnetic and electronic states in (LaMnO3)2(SrMnO3)2 superlattice exhibiting a large negative magnetoresistance. Phys Rev B 92:Article 245104

    Article  Google Scholar 

  28. Srivastava N, Srivastava PC (2015) Heavy ion induced modifications on morphological, magnetic and magneto-transport behaviour of exchange-biased Fe/NiO and NiO/Fe bilayers with Si substrate for spintronic applications. J Mater Sci 50:7610–7626. https://doi.org/10.1007/s10853-015-9321-5

    Article  CAS  Google Scholar 

  29. Dhital C, Hogan T, Yamani Z et al (2013) Neutron scattering study of correlated phase behavior in Sr2IrO4. Phys Rev B 87:Article 144405

    Article  Google Scholar 

  30. Kim BJ, Ohsumi H, Komesu T et al (2009) Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4. Science 323:1329–1332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants Nos. 51627901 and 11574287), National Key Research and Development Program of China (Grants No. 2016YFA0401004), the Fundamental Research Funds for the Central Universities (Grants Nos. WK2340000065 and WK2340000157), the Bureau of Facility Support and Budget, CAS, and the Anhui Initiative in Quantum Information Technologies (AHY100000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhangzhang Cui or Yalin Lu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Huang, H., Wu, Q. et al. Anisotropic magnetoresistance and nonvolatile memory in superlattices of La2/3Sr1/3MnO3 and antiferromagnet Sr2IrO4. J Mater Sci 55, 8211–8219 (2020). https://doi.org/10.1007/s10853-020-04585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04585-8

Navigation