Skip to main content

Advertisement

Log in

Layered double hydroxide-coated silica nanospheres with 3D architecture-modified composite anion exchange membranes for fuel cell applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A flower-like hierarchical structure consisting of a hydroxide ion conductor (layered double hydroxide, LDH) wrapped on hydrophilic SiO2 nanospheres (LDH@SiO2) was first prepared by an in situ co-precipitation method and then quaternized. This resulting nanocomposite (QLDH@SiO2) was used as a multifunctional additive to modify a quaternized chitosan/polyvinyl alcohol (QCS/PVA) blend matrix to prepare composite membranes. The surface modification of LDH@SiO2 with the silane coupling agent facilitates its dispersion within the blend matrix, which leads to the decreased degree of crystallinity and significant enhancement of mechanical properties of the composite membranes. Furthermore, in situ vertical growth of LDH on the surface of SiO2 cores can effectively avoid the ab-face stacking aggregation of LDH, which can take full advantage of the intrinsic hydroxide-conducting ability of LDH nanosheets. Compared to the ion exchange capability (only 2.09 mmol g−1) and effective ionic mobility (1.23×10−5 cm2 s−1 V−1) of the pristine membrane, the two values for the composite membrane containing 6 wt% of QLDH@SiO2 increased to 2.63 mmol g−1 and 1.50×10−5 cm2 s−1 V−1, respectively. In alkaline direct methanol fuel cell tests at 60 °C, the QCS/PVA-6% QLDH@SiO2 composite membrane demonstrates peak power density of 64 mW cm−2 which is 82% higher than that of the pristine membrane (only 35 mW cm−2). Moreover, the increased alkaline stability and decreased methanol permeability of the composite membranes also guarantee their satisfactory fuel cell stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sust Energ Rev 81:1690–1704

    CAS  Google Scholar 

  2. Pan ZF, An L, Zhao TS, Tang ZK (2018) Advances and challenges in alkaline anion exchange membrane fuel cells. Prog Energy Combust Sci 66:141–175

    Google Scholar 

  3. Dekel DR (2018) Review of cell performance in anion exchange membrane fuel cells. J Power Sour 375:158–169

    CAS  Google Scholar 

  4. Li JZ, Zhang B, Wu H, Cao L, He XY, Yan L (2018) Incorporating imidazolium-functionalized graphene oxide into imidazolium-functionalized poly(ether ether ketone) for enhanced hydroxide conductivity. J Membr Sci 565:233–240

    CAS  Google Scholar 

  5. Chen NJ, Chuan L, Li YX, Wang D, Zhong H (2018) High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications. J Membr Sci 552:51–60

    CAS  Google Scholar 

  6. Zhang XL, Fan CC, Yao NY, Zhang P, Hong T, Xu CX, Cheng JG (2018) Quaternary Ti3C2Tx enhanced ionic conduction in quaternized polysulfone membrane for alkaline anion exchange membrane fuel cells. J Membr Sci 563:882–887

    CAS  Google Scholar 

  7. Jiang XC, Sun YX, Zhang HX, Hou LX (2017) Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan/MoS2 composite anion exchange membranes with high selectivity. Carbohydr Polym 180:96–103

    Google Scholar 

  8. Wan Y, Peppley B, Creber KAM, Bui VT (2010) Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells. J Power Sour 195:3785–3793

    CAS  Google Scholar 

  9. Chen NJ, Chuan L, Li Y, Wang D, Zhong H (2018) A hamburger-structure imidazolium-modified silica/polyphenyl ether composite membrane with enhancing comprehensive performance for anion exchange membrane applications. Electrochim Acta 268:295–303

    CAS  Google Scholar 

  10. Elumalai V, Sangeetha D (2018) Preparation of anion exchangeable titanate nanotubes and their effect on anion exchange membrane fuel cell. Mater Des 154:63–72

    CAS  Google Scholar 

  11. Gong CL, Zheng X, Liu H, Wang GJ, Cheng F, Zheng GW (2016) A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes. J Power Sour 325:453–464

    CAS  Google Scholar 

  12. Shi B, Li Y, Zhang H, Wu WJ, Dong R, Dong JC, Wang JT (2016) Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. J Membr Sci 498:242–253

    CAS  Google Scholar 

  13. Cao L, He XY, Jiang ZY, Li XQ, Ren YF, Yang YX, Wu H (2017) Channel-facilitated molecule and ion transport across polymer composite membranes. Chem Soc Rev 46:6725–6745

    CAS  Google Scholar 

  14. Chubar N, Gilmour R, Gerda V, Micusik M, Omastova M (2017) Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability. Adv Colloid Interface Sci 245:62–80

    CAS  Google Scholar 

  15. Wang Q, O’Hare Dermot (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    CAS  Google Scholar 

  16. Pizzoferrato R, Ciotta C, Ferrari I, Narducci R, Pasquini L, Varone A (2018) Layered double hydroxides containing an ionic liquid: ionic conductivity and use in composite anion exchange membranes. ChemElectroChem 5:1–9

    Google Scholar 

  17. Hu Y, Tsen WC, Chuang FS, Jiang SC, Zhang BQ, Zheng GW, Wen S (2019) Glycine betaine intercalated layered double hydroxide modified quaternized chitosan/polyvinyl alcohol composite membranes for alkaline direct methanol fuel cells. Carbohydr Polym 213:320–328

    CAS  Google Scholar 

  18. Chen C, Wang P, Lim TT, Liu LH, Liu S, Xu R (2013) A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water. J Mater Chem A 1:3877–3880

    CAS  Google Scholar 

  19. Pan D, Zhang H, Fan T, Chen J, Duan X (2010) Nearly monodispersed core–shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release. Chem Commun 47:908–910

    Google Scholar 

  20. Zhao S, Liu S, Chang H, Liu H, Zheng GW (2018) Quaternized chitosan-polyvinyl alcohol based IPN composite alkaline polymer electrolyte membranes. Polym Mater Sci Eng 34:137–142

    CAS  Google Scholar 

  21. Wu J, Su ZG (2016) A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 315:1–11

    Google Scholar 

  22. Lee KH, Cho DH, Kim YM, Moon SJ, Seong JG, Shin DW, Sohn JY (2017) Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking. Energy Environ Sci 10:275–285

    CAS  Google Scholar 

  23. Lin JS, Kumar SR, Ma WT, Shih CM, Teng LW, Yang CC (2019) Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J Membr Sci 563:259–269

    Google Scholar 

  24. Yang D, Song S, Zou Y, Wang X, Yu S, Wen T (2017) Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chem Eng J 323:143–152

    CAS  Google Scholar 

  25. Zhu R, Wang Z, Liang P, He X, Zhuang X (2017) Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy. Acta Biomater 63:163–180

    CAS  Google Scholar 

  26. Li C, Wei Y, Wang X, Yin X (2018) Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide. J Taiwan Inst Chem E 85:1–8

    CAS  Google Scholar 

  27. Shirotori M, Nishimura S, Ebitani K (2017) Fine-crystallized LDHs prepared with SiO2 sphere as highly active solid base catalyst. J Mater Chem A 5:6947–6957

    CAS  Google Scholar 

  28. Yang JM, Wang SA (2015) Preparation of graphene-based poly(vinyl alcohol)/chitosan nanocomposites membrane for alkaline solid electrolytes membrane. J Membr Sci 477:49–57

    CAS  Google Scholar 

  29. Lue SJ, Chen JY, Yang JM (2008) Crystallinity and stability of poly(vinyl alcohol)-fumed silica mixed matrix membranes. J Macromol Sci, Phys 47:39–51

    CAS  Google Scholar 

  30. Li XH, Yu YF, Meng YZ (2013) Novel quaternized poly (arylene ether sulfone)/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells. ACS Appl Mater Interfaces 5:1414–1422

    CAS  Google Scholar 

  31. Venkatesan PN, Dharmalingam S (2015) Effect of cation transport of SPEEK-rutile TiO2 electrolyte on microbial fuel cell performance. J Membr Sci 492:518–527

    Google Scholar 

  32. He X, Gang M, Li Z, He G, Yin Y, Lin C (2017) Highly conductive and robust composite anion exchange membranes by incorporating quaternized MIL-101(Cr). Sci Bull 62:266–276

    CAS  Google Scholar 

  33. Zhou T, Zhang J, Qiao J, Liu L, Jiang G, Zhang J, Liu Y (2013) High durable poly(vinyl alcohol)/quaterized hydroxyethylcellulose ethoxylate anion exchange membranes for direct methanol alkaline fuel cells. J Power Sour 227:291–299

    CAS  Google Scholar 

  34. Fan J, Zhu H, Li R, Chen N, Han K (2014) Layered double hydroxide-polyphosphazene-based ionomer hybrid membranes with electric field-aligned domains for hydroxide transport. J Mater Chem A 2:8376–8385

    CAS  Google Scholar 

  35. Wright AG, Fan J, Britton B, Weissbach T, Lee HF, Kitching EA, Peckham TJ, Holdcroft S (2016) Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ Sci 9:2130–2142

    CAS  Google Scholar 

  36. Yang CC, Chiu SS, Kuo SC, Liou TH (2012) Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells. J Power Sour 199:37–45

    CAS  Google Scholar 

  37. Chen H, Wang J, Bai H, Sun J, Li Y, Liu Y, Wang JT (2015) Nanohybrid membranes with hydroxide ion transport highways constructed from imidazolium-functionalized graphene oxide. RSC Adv 5:88736–88747

    CAS  Google Scholar 

  38. Yang JM, Chiu HC (2012) Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J Membr Sci 419:65–71

    Google Scholar 

  39. Ge X, He Y, Guiver MD, Wu L, Ran J, Yang Z, Xu T (2016) Alkaline anion-exchange membranes containing mobile ion shuttles. Adv Mater 28:3467–3472

    CAS  Google Scholar 

  40. Liao GM, Yang CC, Hu CC, Pai YL, Lue SJ (2015) Novel quaternized polyvinyl alcohol/quaternized chitosan nano-composite as an effective hydroxide-conducting electrolyte. J Membr Sci 485:17–29

    CAS  Google Scholar 

  41. Liu LD, Tong CY, He Y, Zhao YX, Bo H, Lu CL (2015) Novel quaternized mesoporous silica nanoparticle modified polysulfone-based composite anion exchange membranes for alkaline fuel cells. RSC Adv 5:43381–43390

    CAS  Google Scholar 

  42. Wang BY, Tseng CK, Shih CM, Pai YL, Kuo HP, Lue SJ (2014) Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene-ethylene/butylene-styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells. J Membr Sci 464:43–54

    CAS  Google Scholar 

  43. Kumar GG, So CS, Kim AR, Nahm KS, Elizabeth R (2010) Effect of ball milling on electrochemical properties of PVDF-HFP porous membranes applied for DMFCs. Ind Eng Chem Res 49:1281–1288

    Google Scholar 

  44. Zeng L, Zhao TS, Li YS (2012) Synthesis and characterization of crosslinked poly (vinyl alcohol)/layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells. Int J Hydrog Energy 37:18425–18432

    CAS  Google Scholar 

  45. Ketpang K, Lee K, Shanmugam S (2014) Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 6:16734–16744

    CAS  Google Scholar 

  46. Taehyun Y, Abdul A, Oh KJ, Shanmugam S (2017) Modified sulfonated poly(arylene ether) multiblock copolymers containing highly sulfonated blocks for polymer electrolyte membrane fuel cells. J Membr Sci 542:102–109

    Google Scholar 

  47. Yong K, Kriangsak K, Shayapat J, Park JS, Shanmugam S (2015) A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cells operating at low relative humidity. J Mater Chem A 3:8148–8155

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51903078) and the major program of technical innovation of Hubei Province (2018ACA152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuqiang Hu or Chunli Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Tsen, WC., Hu, F. et al. Layered double hydroxide-coated silica nanospheres with 3D architecture-modified composite anion exchange membranes for fuel cell applications. J Mater Sci 55, 2967–2983 (2020). https://doi.org/10.1007/s10853-019-04178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04178-0

Navigation