Skip to main content

Advertisement

Log in

Microscopic mapping of dopant content and its link to the structural and thermal stability of yttria-stabilized zirconia polycrystals

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of yttria content on structural and thermal stability of zirconia in yttria-stabilized zirconia (YSZ) polycrystalline ceramics was systematically investigated by Raman spectroscopy and X-ray photoelectron spectroscopy. Taking advantage of an experimentally retrieved linear dependence of Raman bandwidth on yttria content, Raman imaging was applied as an effective tool in examining the local yttrium distribution in YSZ ceramics and its relationship with environmentally driven polymorphic transformation. A significant variation of monoclinic fraction with yttria content and temperature was found and interpreted according to a newly proposed model, which takes into account the change in lattice hydroxyl and oxygen vacancies and the possible formation of stable defect complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307

    Article  CAS  Google Scholar 

  2. Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, Meerbeek BV, Naert I, Vleugels J (2015) Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 16:215–222

    Article  Google Scholar 

  3. Panadero RA, Roman-Rodriguez JL, Ferreiroa A, Sola-Ruiz MF, Fons-Font A (2014) Zirconia in fixed prosthesis: a literature review. J Clin Exp Dent 6:66–73

    Article  Google Scholar 

  4. Butz B (2011) Yttria-doped zirconia as solid electrolyte for fuel-cell applications: fundamental aspects. Südwestdt Verl. für Hochschulschr, Saarbrücken

    Google Scholar 

  5. Ashton Acton Q (2011) Electrolytes: advances in research and application, Atlanta GA, USA

  6. Hao S-J, Wang C, Liu T-L, Mao Z-M, Mao Z-Q, Wang J-L (2017) Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell. Int J Hydrog Energy 42:29949–29959

    Article  CAS  Google Scholar 

  7. Chevalier J, Grandjean S, Kuntz M, Pezzotti G (2009) On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials 30:5279–5282

    Article  CAS  Google Scholar 

  8. McEntire BJ, Enomoto Y, Zhu W, Boffelli M, Marin E, Pezzotti G (2016) Surface toughness of silicon nitride bioceramics: II, comparison with commercial oxide materials. J Mech Behav Biomed Mater 54:346–359

    Article  CAS  Google Scholar 

  9. Pezzotti G, Yamada K, Porporati AA, Kuntz M, Yamamoto K (2009) Fracture toughness analysis of advanced ceramic composite for hip prosthesis. J Am Ceram Soc 92:1817–1822

    Article  CAS  Google Scholar 

  10. Guo X (2004) Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chem Mater 16:3988–3994

    Article  CAS  Google Scholar 

  11. Pinto PA, Colas G, Filleter T, Souza GMD (2016) Surface and mechanical characterization of dental yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) after different aging processes. Microsc Microanal 22:1179–1188

    Article  CAS  Google Scholar 

  12. Butz B, Schneider R, Gerthsen D, Schowalter M, Rosenauer A (2009) Decomposition of 8.5 mol.% Y2O3-doped zirconia and its contribution to the degradation of ionic conductivity. Acta Mater 57:5480–5490

    Article  CAS  Google Scholar 

  13. Pezzotti G (2013) Advanced materials for joint implants. Pan Stanford, Singapore

    Google Scholar 

  14. Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Meerbeek BV, Naert I, Vleugels J (2014) 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness. J Eur Ceram Soc 34:2453–2463

    Article  CAS  Google Scholar 

  15. Savin A, Craus M-L, Turchenko V, Bruma A, Dubos P-A, Malo S, Konstantinova TE, Burkhovetsky VV (2015) Monitoring techniques of cerium stabilized zirconia for medical prosthesis. Appl Sci 5:1665–1682

    Article  CAS  Google Scholar 

  16. Zhu W, Fujiwara A, Nishiike N, Marin E, Sugano N, Pezzotti G (2018) Transition metals increase hydrothermal stability of yttria-tetragonal zirconia polycrystals (3Y-TZP). J Eur Ceram Soc 38:3573–3577

    Article  CAS  Google Scholar 

  17. Butz B, Kruse P, Störmer H, Gerthsen D, Müller A, Weber A, Ivers-Tiffée E (2006) Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2. Solid State Ion 177:3275–3284

    Article  CAS  Google Scholar 

  18. Sato T, Ohtaki S, Shimada M (1985) Transformation of yttria partially stabilized zirconia by low temperature annealing in air. J Mater Sci 20:1466–1470. https://doi.org/10.1007/BF01026344

    Article  CAS  Google Scholar 

  19. Zhu W, Fujiwara A, Nishiike N, Nakashima S, Gu H, Marin E, Sugano N, Pezzotti G (2018) Mechanisms induced by transition metal contaminants and their effect on the hydrothermal stability of zirconia-containing bioceramics: an XPS study. Phys Chem Chem Phys 20:28929–28940

    Article  CAS  Google Scholar 

  20. Zhu W, Nakashima S, Matsuura M, Gu H, Marin E, Pezzotti G (2019) Raman and X-ray photoelectron spectroscopic characterization of thermal stability of 3 mol% yttria stabilized zirconia ceramics. J Eur Ceram Soc 39:4928–4935. https://doi.org/10.1016/j.jeurceramsoc.2019.06.056

    Article  CAS  Google Scholar 

  21. Katagiri G, Ishida H, Ishitani A, Masaki T (1988) Direct determination by a Raman microprobe of the transformation zone size in Y2O3 containing tetragonal ZrO2 polycrystals. Adv Ceram 24:537–544

    Google Scholar 

  22. Chevalier J, Deville S, Münch E, Jullian R, Lair F (2004) Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 25:5539–5545

    Article  CAS  Google Scholar 

  23. Witz G, Shklover V, Steurer W, Bachegowda S, Bossmann H-P (2007) Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J Am Ceram Soc 90:2935–2940

    Article  CAS  Google Scholar 

  24. Asadikiya M, Sabarou H, Chen M, Zhong Y (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6:17438–17445

    Article  CAS  Google Scholar 

  25. Pandey AK, Biswas K (2014) Effect of agglomeration and calcination temperature on the mechanical properties of yttria stabilized zirconia. Ceram Int 40:14111–14117

    Article  CAS  Google Scholar 

  26. Madeira S, Buciumeanu M, Carvalho O, Silva FS (2019) Influence of sintering pressure on the microstructure and tribological properties of low temperature fast sintered hot-pressed Y-TZP. Ceram Int 45:5883–5893

    Article  CAS  Google Scholar 

  27. Basu B, Balani K (2011) Advanced structural ceramics. Wiley, Hoboken

    Book  Google Scholar 

  28. Chevalier J, Gremillard L, Deville S (2007) Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 37:1–32

    Article  CAS  Google Scholar 

  29. Ahamer C, Opitz AK, Rupp GM, Fleig J (2017) Revisiting the temperature dependent ionic conductivity of yttria stabilized zirconia (YSZ). J Electrochem Soc 164:F790–F803

    Article  CAS  Google Scholar 

  30. Merle-Mejean T, Barberis P, Othmane SB, Nardou F, Quintard PE (1998) Chemical forms of hydroxyls on/in zirconia: an FT-IR study. J Eur Ceram Soc 18:1579–1586

    Article  CAS  Google Scholar 

  31. Balint I, Springuel-Huet M-A, Aika K-I, Fraissard J (1999) Evidence for oxygen vacancy formation in HZSM-5 at high temperature. Phys Chem Chem Phys 1:3845–3851

    Article  CAS  Google Scholar 

  32. Yanagida H, Koumoto K, Miyayama M (1996) The chemistry of ceramics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenliang Zhu or Giuseppe Pezzotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Nakashima, S., Marin, E. et al. Microscopic mapping of dopant content and its link to the structural and thermal stability of yttria-stabilized zirconia polycrystals. J Mater Sci 55, 524–534 (2020). https://doi.org/10.1007/s10853-019-04080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04080-9

Navigation