Skip to main content

Advertisement

Log in

Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In view of the bulk production, resolvability, dispersibility of aqueous solution, graphene oxides (GO) prepared by strong chemical oxidation of graphite flakes have been widely used for the production of graphene-like materials. However, because of the insulating nature caused by amounts of defects on its surface, the application of GO material is greatly constrained. Hence, effective reduction of GO becomes critical. The photoreduction of GO showed more attractive properties than conventional thermal/chemical routes due to its synchronous reduction and flexible patterning, which facilitates a number of applications, such as the electrochemical energy storage devices, electronic devices, and biomimetic substrates. In this review, we dedicatedly summarized the latest advances in photoreduction including the fabrications and applied values in multiple fields. We deem that the photoreduction and synchronous patterning of GO will have very prospects in the development of graphene devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Reprinted with permission from [66], copyright (2015) Wiley-VCH

Figure 2
Figure 3
Figure 4
Figure 5

Reprinted with permission from [97], copyright (2009) the Royal Society of Chemistry

Figure 6

Reprinted with permission from [109], copyright (2011) Springer Nature

Figure 7

Reprinted with permission from [118], copyright (2012) American Chemical Society

Figure 8

Reprinted with permission from [61], copyright (2009) American Chemical Society

Figure 9

Reprinted with permission from [127], copyright (2014) Wiley-VCH

Figure 10

Reprinted with permission from [129], copyright (2015) Wiley-VCH

Similar content being viewed by others

References

  1. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  2. Novoselov K, Jiang Z, Zhang Y, Morozov S, Stormer H, Zeitler U, Maan J, Boebinger G, Kim P, Geim A (2007) Room-temperature quantum hall effect in graphene. Science 315:1379

    CAS  Google Scholar 

  3. Strek W, Cichy B, Radosinski L, Gluchowski P, Marciniak L, Lukaszewicz M, Hreniak D (2015) Laser-induced white-light emission from graphene ceramics—opening a band gap in graphene. Light Sci Appl 4:e237

    CAS  Google Scholar 

  4. Rodrigo D, Tittl A, Limaj O, Abajo F, Pruneri V, Altug H (2017) Double-layer graphene for enhanced tunable infrared plasmonics. Light Sci Appl 6:e16277

    CAS  Google Scholar 

  5. Shekhar C, Nayak A, Yan S et al (2015) Extremely large magnetoresistance and ultrahigh mobility in the topological weyl semimetal candidate Nbp. Nat Phys 11:645–649

    CAS  Google Scholar 

  6. Hong J, Hu Z, Probert M (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun 6:6293

    CAS  Google Scholar 

  7. Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-based nanocomposites for energy storage. Adv Energy Mater 6:1502159

    Google Scholar 

  8. Zheng Z, Li J, Ma T, Fang H et al (2017) Tailoring of electromagnetic field localizations by two dimensional graphene nanostructures. Light Sci Appl 6:e17057

    CAS  Google Scholar 

  9. Blackburn J, Ferguson A, Cho C, Grunlan J (2018) Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 30:1704386

    Google Scholar 

  10. Guo Y, Xu G, Yang X et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015

    CAS  Google Scholar 

  11. Zhu C, Han T, Duoss E, Golobic A, Kuntz J, Spadaccini C, Worsley M (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962

    CAS  Google Scholar 

  12. Seyed H, Rouhollah J, Dorna E et al (2014) High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8:2456–2466

    Google Scholar 

  13. Lee H, Choi T, Lee Y et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572

    Google Scholar 

  14. Xin W, Chen X, Liu Z, Jiang W, Gao X, Jiang X, Chen Y, Tian J (2016) Photovoltage enhancement in twisted-bilayer graphene using surface plasmon resonance. Adv Opt Mater 4:1703–1710

    CAS  Google Scholar 

  15. Xin W, Liu Z, Sheng Q et al (2014) Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Opt Express 22:10239–10247

    CAS  Google Scholar 

  16. Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498

    CAS  Google Scholar 

  17. Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366

    CAS  Google Scholar 

  18. Liu Z, Lau S, Yan F (2015) Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem Soc Rev 44:5638–5679

    CAS  Google Scholar 

  19. Li Z, Huang H, Tang S et al (2016) Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74:144–154

    CAS  Google Scholar 

  20. Chimene D, Alge D, Gaharwar A (2015) Two dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27:7261–7284

    CAS  Google Scholar 

  21. Xin W, Wu T, Zou T, Wang Y, Jiang W, Xing F, Yang J, Guo C (2019) Ultrasensitive optical detection of water pressure in microfluidics using smart reduced graphene oxide glass. Front Chem. https://doi.org/10.3389/fchem.2019.00395

    Article  Google Scholar 

  22. Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273

    CAS  Google Scholar 

  23. Wang C, Zhao M, Li J et al (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271

    CAS  Google Scholar 

  24. Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259

    Google Scholar 

  25. Li F, Zhou Z (2018) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14:1702961

    Google Scholar 

  26. Dubal D, Chodankar N, Kim D, Gomez-Romero P (2017) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129

    Google Scholar 

  27. Peng H, Huang J, Cheng X, Zhang Q (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260

    Google Scholar 

  28. Trung T, Ramasundaram S, Hwang B, Lee N (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509

    CAS  Google Scholar 

  29. Cheng Y, Wang R, Sun J, Gao L (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27:7365–7371

    CAS  Google Scholar 

  30. Liu H, Dong M, Huang W et al (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    CAS  Google Scholar 

  31. Wang K, Ausri I, Chu K et al (2019) Pressure-driven solvent transport and complex ion permeation through graphene oxide membranes. Adv Mater Interfaces 6:1802056

    Google Scholar 

  32. Ares P, Aguilar G, Rodriguez-San-Miguel D et al (2016) Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater 28:6332–6336

    CAS  Google Scholar 

  33. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715

    CAS  Google Scholar 

  34. Coleman J (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22

    CAS  Google Scholar 

  35. Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548

    CAS  Google Scholar 

  36. Li X, Cai W, Colombo L, Ruoff R (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272

    CAS  Google Scholar 

  37. Zhu F, Chen W, Xu Y et al (2015) Epitaxial growth of two-dimensional stanine. Nat Mater 14:1020–1025

    CAS  Google Scholar 

  38. Dlubak B, Martin M, Deranlot C et al (2012) Highly efficient spin transport in epitaxial graphene on SiC. Nat Phys 8:557–561

    CAS  Google Scholar 

  39. Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398

    CAS  Google Scholar 

  40. Ciesielski A, Haar S, Aliprandi A et al (2016) Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano 10:10768–10777

    CAS  Google Scholar 

  41. Lu L, Zhu Y, Shi C, Pei Y (2016) Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 109:373–383

    CAS  Google Scholar 

  42. Chen Y, Gong X, Gai J (2016) Progress and challenges in transfer of large-area graphene films. Adv Sci 3:1500343

    Google Scholar 

  43. Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186

    CAS  Google Scholar 

  44. Dimiev A, Alemany L, Tour J (2013) Graphene oxide origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588

    CAS  Google Scholar 

  45. Xu L, Shi R, Li H, Han C, Wu M, Wong C, Kang F, Li B (2018) Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 127:459–468

    CAS  Google Scholar 

  46. Sherlala A, Raman A, Bello M, Asghar A (2017) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017

    Google Scholar 

  47. Wang J, Chen B (2015) Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J 281:379–388

    CAS  Google Scholar 

  48. Yang Q, Su Y, Chi C et al (2017) Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat Mater 16:1198–1203

    CAS  Google Scholar 

  49. Chen L, Shi G, Shen J et al (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383

    CAS  Google Scholar 

  50. Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29:1606793

    Google Scholar 

  51. Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487

    CAS  Google Scholar 

  52. Wen B, Wang X, Cao W et al (2014) Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6:5754–5761

    CAS  Google Scholar 

  53. Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H (2012) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1:765–777

    CAS  Google Scholar 

  54. Travlou N, Kyzas G, Lazaridis N, Deliyanni E (2013) Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29:1657–1668

    CAS  Google Scholar 

  55. Sher S, Zhang K, Park A, Kim K, Park N, Park J, Yoo P (2013) Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5:5093–5101

    Google Scholar 

  56. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339

    CAS  Google Scholar 

  57. Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5:5426–5434

    CAS  Google Scholar 

  58. Feng H, Cheng R, Zhao X, Duan X, Li J (2013) Corrigendum: a low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539

    Google Scholar 

  59. Kuila T, Mishra A, Khanra P, Kim N, Lee J (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71

    CAS  Google Scholar 

  60. Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    CAS  Google Scholar 

  61. Cote L, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032

    CAS  Google Scholar 

  62. Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S, Kaner R (2010) Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv Mater 22:419–423

    CAS  Google Scholar 

  63. Williams G, Seger B, Kamat P (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    CAS  Google Scholar 

  64. Ng Y, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612

    CAS  Google Scholar 

  65. Mukherjee R, Thomas A, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6:7867–7878

    CAS  Google Scholar 

  66. Han D, Zhang Y, Jiang H, Xia H, Feng J, Chen Q, Xu H, Sun H (2015) Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater 27:332–338

    CAS  Google Scholar 

  67. Cai J, Lv C, Aoyagi E, Ogawa S, Watanabe A (2018) Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl Mater Interfaces 10:23987–23996

    CAS  Google Scholar 

  68. Zheng X, Jia B, Chen X, Gu M (2014) In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26:2699–2703

    CAS  Google Scholar 

  69. Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I, Niaura G, Mažeikienė R (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52:574–582

    CAS  Google Scholar 

  70. Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683

    CAS  Google Scholar 

  71. Abdelsayed V, Moussa S, Hassan H, Aluri H, Collinson M, El-Shall M (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809

    CAS  Google Scholar 

  72. Kim S, Parvez M, Chhowalla M (2009) UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem Phys Lett 483:124–127

    CAS  Google Scholar 

  73. Ding Y, Zhang P, Zhuo Q, Ren H, Yang Z, Jiang Y (2011) A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 22:215601

    CAS  Google Scholar 

  74. Sokolov D, Rouleau C, Geohegan D, Orlando T (2013) Excimer laser reduction and patterning of graphite oxide. Carbon 53:81–89

    CAS  Google Scholar 

  75. Arul R, Oosterbeek R, Robertson J, Xu G, Jin J, Simpson M (2016) The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon 99:423–431

    CAS  Google Scholar 

  76. Prezioso S, Perrozzi F, Donarelli M, Bisti F, Santucci S, Palladino L, Nardone M, Treossi E et al (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28:5489–5495

    CAS  Google Scholar 

  77. Smirnov V, Arbuzov A, Shul’ga Y, Baskakov S, Martynenko V, Muradyan V, Kresova E (2011) Photoreduction of graphite oxide. High Energy Chem 45:57–61

    CAS  Google Scholar 

  78. Guo L, Jiang H, Shao R et al (2012) Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50:1667–1673

    CAS  Google Scholar 

  79. Matsumoto Y, Koinuma M, Kim S, Watanabe Y, Taniguchi T, Hatakeyama K, Tateishi H, Ida S (2010) Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2:3461–3466

    CAS  Google Scholar 

  80. Sokolov D, Shepperd K, Orlando T (2010) Formation of graphene features from direct laser-induced reduction of graphite oxide. J Phys Chem Lett 1:2633–2636

    CAS  Google Scholar 

  81. Wang L, Lin X, Hu W et al (2015) Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4:e342

    Google Scholar 

  82. Dai Z, Xiao X, Wu W et al (2015) Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light Sci Appl 4:e253

    Google Scholar 

  83. Chen J, Zheng B, Shao G et al (2015) An all-optical modulator based on a stereo graphene–microfiber structure. Light Sci Appl 4:e360

    CAS  Google Scholar 

  84. Zhu L, Liu F, Lin H et al (2016) Angle-selective perfect absorption with two dimensional materials. Light Sci Appl 5:e16052

    CAS  Google Scholar 

  85. Xu Q, Ma T, Danesh M et al (2017) Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light Sci Appl 6:e16204

    CAS  Google Scholar 

  86. Fatt T, Tao Y, Soon T, Wei H, Haur S (2012) Direct laser-enabled graphene oxide-reduced graphene oxide layered structures with micropatterning. J Appl Phys 112:064309

    Google Scholar 

  87. Zhou Y, Bao Q, Varghese B, Tang L, Tan C, Sow C, Loh K (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71

    CAS  Google Scholar 

  88. Avella-oliver M, Morais S, Puchades R, Maquieira Á (2016) Towards photochromic and thermochromic biosensing. TrAC Trends Anal Chem 79:37–45

    CAS  Google Scholar 

  89. Strong V, Dubin S, El-Kady M, Lech A, Wang Y, Weiller B, Kaner R (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6:1395–1403

    CAS  Google Scholar 

  90. Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F (2010) Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20

    CAS  Google Scholar 

  91. Guo L, Zhang Y, Han D et al (2014) Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Adv Opt Mater 2:120–125

    Google Scholar 

  92. Kim G, Shao L, Zhang K (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723

    CAS  Google Scholar 

  93. Dianov E (2012) Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl 1:e12

    Google Scholar 

  94. Xing G, Yi J, Yan F, Wu T, Li S (2014) Positive magnetoresistance in ferromagnetic Nd-doped In2O3 thin films grown by pulse laser deposition. Appl Phys Lett 104:202411

    Google Scholar 

  95. Park S, An J, Potts J, Velamakanni A, Murali S, Ruoff R (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023

    CAS  Google Scholar 

  96. Reddy A, Srivastava A, Gowda S, Gowda S, Gullapalli H, Dubey M, Ajayan P (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342

    CAS  Google Scholar 

  97. Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878

    CAS  Google Scholar 

  98. Zhao X, Hayner C, Kung M, Kung H (2012) Photothermal-assisted fabrication of iron fluoride–graphene composite paper cathodes for high-energy lithium-ion batteries. Chem Commun 48:9909–9911

    CAS  Google Scholar 

  99. Wang W, Song X, Gu C, Liu D, Liu J, Huang J (2018) A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J Alloy Compd 741:223–230

    CAS  Google Scholar 

  100. Wang G, Zhang J, Yang S, Wang F, Zhuang X, Müllen K, Feng X (2018) Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv Energy Mater 8:1702254

    Google Scholar 

  101. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Google Scholar 

  102. Wei W, Cui X, Chen W, Ivey D (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    CAS  Google Scholar 

  103. Chen H, Cong T, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    CAS  Google Scholar 

  104. Kaempgen M, Chan C, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    CAS  Google Scholar 

  105. Dong X, Xu H, Wang X et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    CAS  Google Scholar 

  106. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Google Scholar 

  107. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    CAS  Google Scholar 

  108. El-Kady M, Strong V, Dubin S, Kaner R (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    CAS  Google Scholar 

  109. Gao W, Singh N, Song L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500

    CAS  Google Scholar 

  110. Fu L, Wang A, Lai G et al (2018) A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim Acta 185:87

    Google Scholar 

  111. Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803

    Google Scholar 

  112. Zhang Y, Tang T, Girit C, Hao Z, Martin M, Zettl A, Crommie M, Shen Y et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823

    CAS  Google Scholar 

  113. Ni Z, Yu T, Lu Y, Wang Y, Feng Y, Shen Z (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305

    CAS  Google Scholar 

  114. Ghosh D, Lim J, Narayan R, Kim S (2016) High energy density all solid state asymmetric pseudocapacitors based on free standing reduced graphene oxide-Co3O4 composite aerogel electrodes. ACS Appl Mater Interfaces 8:22253–22260

    CAS  Google Scholar 

  115. Feng L, Wang K, Zhang X, Sun X, Li C, Ge X, Ma Y (2018) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463

    Google Scholar 

  116. Wang Q, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657

    Google Scholar 

  117. Kymakis E, Savva K, Stylianakis M, Fotakis C, Stratakis E (2013) Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater 23:2742–2749

    CAS  Google Scholar 

  118. Guo L, Shao R, Zhang Y (2012) Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J Phys Chem C 116:3594–3599

    CAS  Google Scholar 

  119. Meng F, Zheng H, Chang Y, Zhao Y, Li M, Wang C, Sun Y, Liu J (2018) One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE T Nanotechnol 17:212–219

    CAS  Google Scholar 

  120. Tian H, Fan H, Ma J, Liu Z, Ma L, Lei S, Fang J, Long C (2018) Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J Hazard Mater 341:102–111

    Google Scholar 

  121. Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G et al (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nanomicro Lett 8:95–119

    Google Scholar 

  122. Wong T, Kang S, Tang S, Smythe E, Hatton B, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    CAS  Google Scholar 

  123. Zheng Y, Bai H, Huang Z, Tian X, Nie F, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643

    CAS  Google Scholar 

  124. Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734

    CAS  Google Scholar 

  125. Feng L, Li S, Li Y et al (2003) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Google Scholar 

  126. Li X, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Google Scholar 

  127. Jiang H, Zhang Y, Han D, Xia H, Feng J, Chen Q, Hong Z, Sun H (2014) Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Funct Mater 24:4595–4602

    CAS  Google Scholar 

  128. Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, Jiang L, Qu L (2013) Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Ange Chem Int Ed 52:10482–10486

    CAS  Google Scholar 

  129. Han D, Zhang Y, Liu Y et al (2015) Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv Funct Mater 25:4548–4557

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Grants (51705192, 11804334); the China Postdoctoral Science Foundation (2017M611325); and the National Postdoctoral Program for Innovative Talents (BX201600064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liu, Dandan Wang or Wei Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhao, B., Liu, Y. et al. Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. J Mater Sci 55, 480–497 (2020). https://doi.org/10.1007/s10853-019-03981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03981-z

Navigation