Skip to main content
Log in

Optical nonlinear enhancement through interaction between Ag nanoparticles and CdSe quantum dots

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The CdSe/Al2O3/Ag composite films were prepared on quartz glass substrate by magnetron sputtering and spin coating with the CdSe oily quantum dots. The absorption experiments and analysis results show that all of the CdSe quantum dots, Ag films, and Al2O3 contribute to the absorption peak, and the absorption peak of the CdSe/Al2O3/Ag composite films shifts to the ultraviolet region (356 nm). The transmission TZ-scan results illustrate that the nonlinear absorption effect of the CdSe/Al2O3/Ag composite films exhibits reverse-saturated absorption characteristic, and the third-order nonlinear refractive index of the CdSe/Al2O3/Ag composite films is approximately 105 times greater than that of the CdSe quantum dots. With the increase in the CdSe quantum dots concentration, the nonlinear absorption and refraction properties of the CdSe/Al2O3/Ag composite films are enhanced. However, the nonlinear absorption and refractive index of the CdSe/Al2O3/Ag composite films decrease with the increase in sputtering power of Ag. The reverse-saturated absorption characteristic is explained by the three-level system. The composite films could be applied to new optical control fields, for example, optical phase recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Guenther T, Lienau C, Elsaesser T, Glanemann M, Martin V, Kuhn T, Eshlaghi S, Wieck AD (2002) Ultrafast near-field spectroscopy of single quantum dots. Phys Rev Lett 89(5):057–061

    Article  Google Scholar 

  2. Foster MA, Turner AC, Lipson M, Gaeta AL (2008) Silicon-chip-based single-shot ultrafast optical oscilloscope. Opt Express 16(2):1300–1320

    Article  Google Scholar 

  3. Parra Gustavo G, Ferreira Lucimara P, Goncalves Pablo J, Sizova Svetlana V, Morozov Vladimir N (2018) Stimulation of cysteine-coated CdSe/ZnS quantum dot luminescence by meso-tetrakis (p-sulfonato-phenyl) porphyrin. Nanoscale Res Lett 13(1):1–8

    Article  Google Scholar 

  4. Kohnehpoushi S, Eskandari M, Nejand BA, Ahmadi V (2016) Numerical calculation of plasmonic field absorption enhancement in CdSe-quantum dot sensitized ZnO nanorods by Ag nanoparticle periodic arrays. Opt Mater 62:90–94

    Article  Google Scholar 

  5. Alejo T, Paulo PMR, Merchán MD, Garcia-Fernandez E, Costa SMB, Velázquez MM (2017) Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films. J Lumin 183:113–120

    Article  Google Scholar 

  6. Feng DL, Feng YH, Yuan SW, Zhang XX, Wang G (2017) Melting behavior of Ag nanoparticles and their clusters. Appl Therm Eng 111:1457–1463

    Article  Google Scholar 

  7. He TC, Wang CS, Pan X, Wang YL (2008) Nonlinear optical response of Au and Ag nanoparticles doped polyvinylpyrrolidone thin films. Phys Lett A 373(5):593–595

    Google Scholar 

  8. Zhao Cuihua, Junli Du, Huang Dewei, Li Yuqiong, Chen Jianhua, Li Weizhou (2016) Microstructure and strong optical absorption property of the Ag/Al2O3 nano-films. J Alloys Compd 671:419–423

    Article  Google Scholar 

  9. Bhattacharjee AK, Pérez-Conde J (2005) Transition metal-doped quantum dots: optical detection and manipulation of spin states. Physica E 32(1):430–433

    Google Scholar 

  10. Chang SC, Li TS, Chen BY, Lin TC (2011) Microwave hydrogen plasma annealing to improve electrical and optical properties of aluminum doped zinc oxide films. Impact 10:611–621

    Google Scholar 

  11. El Haouari M, Talbi A, Feddi E, El Ghazi H, Oukerroum A, Dujardin F (2017) Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt Commun 383:231–237

    Article  Google Scholar 

  12. Zeng QB, Chen S, Lü R (2016) Fano effect in an AB interferometer with a quantum dot side-coupled to a single Majorana bound state. Phys Lett A 380(7–8):951–957

    Article  Google Scholar 

  13. Fezai I, Jaziri S (2017) Energy transfer from InSb quantum dot to graphene. Superlattices Microstruct 109:71–80

    Article  Google Scholar 

  14. Zhong JS, Xiang WD (2017) Sol–gel synthesis and third-order nonlinear optical properties of Cu3.8Ni nanoparticles doped glass. J Noncryst Solids 462:17–22

    Article  Google Scholar 

  15. Shettigar N, Pramodini S, Kityk IV, Abd-Lefdil M, Eljald EM, Regragui M, Antony A, Rao A, Sanjeev G, Ajeyakashi KC, Poornesh P (2017) Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation. J Phys Chem Solids 110:260–265

    Article  Google Scholar 

  16. Girisun TCS, Somayaji RM, Priyadarshani N, Rao SV (2017) Femtosecond third order optical nonlinearity and optical limiting studies of (γ and β)-Barium borate nanostructures. Mater Res Bull 87:102–108

    Article  Google Scholar 

  17. Pu Y, Grange R, Hsieh CL, Psaltis D (2010) Nonlinear optical properties of core–shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104:207402

    Article  Google Scholar 

  18. Yang Y, Nogami M, Shi J, Chen H, Liu Y, Qian S (2005) Ultrafast electron dynamics and enhanced optical nonlinearities of CdS-capped Au/BaTiO3 composite film. J Appl Phys 98:033528

    Article  Google Scholar 

  19. Singh MR (2013) Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system. Nanotechnology 24:125701

    Article  Google Scholar 

  20. Ma GH, He J, Rajiv K, Tang SH, Yang Y, Nogami M (2004) Observation of resonant energy transfer in Au:CdS nanocomposite. Appl Phys Lett 84:4684

    Article  Google Scholar 

  21. Nan F, Liang S, Liu XL, Peng XN, Li M, Yang ZJ, Zhou L, Hao ZH, Wang QQ (2013) Sign-reversed and magnitude-enhanced nonlinear absorption of Au–CdS core–shell hetero-nanorods. Appl Phys Lett 102:163112

    Article  Google Scholar 

  22. Gong HM, Wang XH, Du YM, Wang QQ (2006) Optical nonlinear absorption and refraction of CdS and CdS–Ag core–shell quantum dots. J Chem Phys 125:24707

    Article  Google Scholar 

  23. Fu M, Wang K, Long H, Yang G, Lu P, Hetsch F, Susha AS, Rogach AL (2012) Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures. Appl Phys Lett 100:063117

    Article  Google Scholar 

  24. Zhu BH (2007) Study on third-order nonlinear optical properties of metallic and semiconductor nanoparticles. Henan University, Zhengzhou, pp 1–113

    Google Scholar 

  25. Haldar KK, Sen T, Patra A (2010) Meral conjugated semiconductor hybrid nano-particle-based fluorescence resonance energy transfer. J Phys Chem C 114:4869

    Article  Google Scholar 

  26. Valligatla S, Haldar KK, Patra A, Desai NR (2016) Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement. Opt Laser Technol 84:87–93

    Article  Google Scholar 

  27. Sreeramulu V, Haldar KK, Patra A, Rao DN (2014) Nonlinear optical switching and enhanced nonlinear optical response of Au–CdSe hetero-nanostructures. J Phys Chem C 118(51):30333–30341

    Article  Google Scholar 

  28. Venkatram N, Sathyavathi R, Rao DN (2007) Size dependent multiphoton absorption and refraction of CdSe nanoparticles. Opt Express 15(19):12258–12263

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (Grant No. 11504072), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F201202), the Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No. 12541231), Key Laboratory for Photonic and Electronic Bandgap Material (Ministry of Education) and School of Physics and Electronic Engineering of Harbin Normal University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Jiang, D., Wang, L. et al. Optical nonlinear enhancement through interaction between Ag nanoparticles and CdSe quantum dots. J Mater Sci 54, 8450–8460 (2019). https://doi.org/10.1007/s10853-019-03487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03487-8

Navigation